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Preface

This open-source book is meant to be a collaborative effort, bringing together insights from students,
professionals, and the broader community of analog integrated circuit designers. It will leverage
the new possibilities associated with open-source process design kits (PDKs) and open-source chip
design software to build up a knowledge base with reproducible examples in a “live and dynamic”
online format.

As of its initial creation in August 2024, it is merely a skeleton with the following structure.

• Part I: Learn to crawl — Square-law transistors, biasing and small-signal analysis
• Part II: Learn to walk — Real transistors, noise, mismatch, and distortion
• Part III: Dare to run — Knowledge base for state-of-the-art circuits

Part I is dedicated to learning about powerful abstractions that are necessary to analyze and design
analog integrated circuits. This initial exposure is driven with the simplest possible transistor
models so that we can focus on fully understanding these abstractions and don’t get distracted
by second-order effects that will only become meaningful later on. An added and important side
benefit is that we can perfectly match hand calculations and simulations, which not only validates
our methods, but also abandons the widespread misconception that circuit simulators rely on some
form of “magic” to produce their outputs.

Part II turns expands our horizon to analog circuits with modern transistors, which usually do
not obey square-law equations. The good news is that all major abstractions, analysis and design
approaches still apply. We just need to abandon the idea of predicting the transistor characteristics
with simple equations, and instead rely on lookup tables or advanced model expressions (e.g., EKV-
based). Additionally, this is a good time in the overall learning process for dealing with the major
pain points of analog design: noise, mismatch and distortion. We review these impairments for the
most important circuit primitives, forming a scalable basis for understanding larger circuits.

Part III is meant to capture “deep dives” on commonly used circuits. It will be a forum where you
can learn, for example, about the “best” way of going about the design of a bandgap reference, an
LC voltage-controlled oscillator, or a successive approximation ADC. This part will undoubtedly
be in constant flux and ideally thrive on pointers to reproducible open-source design repositories,
simulation data, layouts, etc.
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Conventions

Please follow these conventions as you contribute to this online book:

1. Clear Structure and Organization:

• Chapter Outlines: Begin each chapter with an outline that provides an overview of
the topics covered.

• Sequential Numbering: Utilize sequential numbering for chapters, sections, and sub-
sections to facilitate easy reference.

2. Accessible Language:

• Glossary: Include a glossary that defines technical terms and jargon.
• Consistent Terminology: Maintain consistent use of terminology throughout the book

to avoid confusion.

3. Learning Aids:

• Diagrams and Figures: Employ diagrams, figures, and tables to visually convey com-
plex concepts.

• Sidebars: Use sidebars for additional information, anecdotes, or to provide real-world
context to the theoretical content.

4. Interactive Elements:

• Colabs and Projects: Integrate exercises and projects at the end of each chapter to
encourage active learning and practical application of concepts.

• Case Studies: Incorporate case studies to provide a deeper understanding of how
principles are applied in real-world situations.

5. References and Further Reading:

• Bibliography: Include a bibliography at the end of each chapter for readers who wish
to delve deeper into specific topics.

• Citations: Maintain a consistent style for citations, adhering to recognized academic
standards like APA, MLA, or Chicago.

6. Supporting Materials:

• Supplementary Online Resources: Provide links to supplementary online resources,
such as video lectures, webinars, or interactive modules.

• Datasets and Code Repositories: Share datasets and code repositories for hands-on
practice, particularly for sections dealing with algorithms and applications.

7. Feedback and Community Engagement:
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Conventions

• Forums and Discussion Groups: Establish forums or discussion groups where readers
can interact, ask questions, and share knowledge.

• Open Review Process: Implement an open review process, inviting feedback from
the community to continuously improve the content.

8. Inclusivity and Accessibility:

• Inclusive Language: Utilize inclusive language that respects diversity and promotes
equality.

• Accessible Formats: Ensure the textbook is available in accessible formats, including
audio and Braille, to cater to readers with disabilities.

9. Index:

• Comprehensive Index: Include a comprehensive index at the end of the book to help
readers quickly locate specific information.

Implementing these conventions can contribute to creating a textbook that is comprehensive, ac-
cessible, and conducive to effective learning.
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1. Introduction

With the development of the integrated circuit, the semiconductor industry is undoubtedly the
most influential industry to appear in our society. Its impact on almost every person in the world
exceeds that of any other industry since the beginning of the Industrial Revolution. The reasons
for its success are as follows:

• Exponential growth of the number of functions on a single integrated circuit.

• Exponential reduction in the cost per function.

• Exponential growth in sales (economic importance) for approximately forty years.

This growth has led to ever-increasing performance at lower prices for consumer electronics such as
cellular phones, personal computers, audio players, etc. The computational power available to the
individual has increased to the point that it has changed the way we think about problem solving.
Communication technology including wired and wireless networks have fundamentally changed the
way we live and communicate.

The innovation responsible for these impressive results is the integration of electronic circuit com-
ponents fabricated in silicon integrated circuit (IC) technology. Today, many of the ICs shaping
new applications contain both analog and digital circuitry, and are therefore called mixed-signal
integrated circuits. In mixed-signal ICs, the analog circuitry is typically responsible for interfacing
with physical signals, and concerned for example with the amplification of a weak signal from an
antenna, or driving a sound signal into a loudspeaker. On the other hand, digital circuitry is pri-
marily used for computing, enabling powerful functions such as Fast Fourier Transforms or floating
point multiplication.

This module was written as an introduction to the analysis and design of analog integrated circuits
in complementary metal-oxide-semiconductor (CMOS) technology. In this first chapter, we
will motivate this subject by looking at an example of a mixed-signal IC and by highlighting the
need for a systematic study of the fundamental principles and proper engineering approximations
in analog design.

Chapter Objectives

• Provide a motivation for the study of elementary analog integrated circuits.

• Provide a roadmap for the subjects that will be covered throughout this module.

• Review fundamental concepts for the construction of two-port circuit models.

13



1. Introduction

Figure 1.1.: Block diagram of a mixed-signal system.

1.1. Mixed-Signal Integrated Circuits

Figure 1.1 shows a generic diagram of a mixed-signal system, incorporating a mixed-signal inte-
grated circuit. To the left of this diagram are the transducers and media that represent the sources
and sinks of the information processed by the system. Examples of input transducers include mi-
crophones or photodiodes used to receive communication signals from an optical fiber. Likewise,
the output of the system may drive an antenna for radio-frequency communication or a mechanical
actuator that controls the zoom of a digital camera. At the boundary between the media and trans-
ducers are typically signal conditioning circuits that translate the incoming and outgoing signals
to the proper signal strength and physical format. For instance, an amplifier is usually needed to
increase the strength of the receive signal from a radio antenna, so that it can be more easily pro-
cessed by the subsequent system components. In most systems, the signal conditioning circuitry
interfaces to analog-to-digital and digital-to-analog converters, which provide the link between
analog quantities and their digital representation in the computing back-end of the system.

1.1.1. Example: Single-Chip Radio

The block diagram of a modern mixed-signal integrated circuit is shown in Figure 1.2. This design
incorporates most of the circuitry needed to realize a modern cellular phone. For instance, it
contains a front-end low-noise amplifier (LNA) to condition the incoming antenna signal. The
amplified signal is subsequently frequency shifted, converted into digital format and fed into a
digital processor. Even though the block diagram in Figure 1.2 looks quite complex, all of its
elements can be mapped into one of the blocks of the generic diagram of Figure 1.1.

Figure 1.3 shows the chip photo of the single-chip radio, with some of the system’s key building
blocks annotated. As evident from this diagram, the digital logic dominates the area of this
particular IC. This situation is not uncommon in modern mixed-signal ICs, not least because

14



1.1. Mixed-Signal Integrated Circuits

Figure 1.2.: Block diagram of a single-chip radio (Staszewski et al. 2008).
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1. Introduction

the utilized digital algorithms have reached an enormous complexity, requiring millions or tens of
millions of logic gates.

Figure 1.3.: Chip photo of a single-chip radio (Staszewski et al. 2008).

Despite the dominance of digital logic within most systems, the analog interface components are
equally important, as they determine how and how much information can be communicated between
the physical world and the digital processing backbone. In many cases, the performance of the
signal conditioning and data conversion circuitry ultimately determines the performance of the
overall system.

1.1.2. Example: Photodiode Interface Circuit

Figure 1.4 shows an example of a signal conditioning circuit that plays a critical role in fiber-
optic communication systems. In such a system, a photodiode is used to convert light intensity to
electrical current (𝑖𝐼𝑁). In order to condition the signal for further processing, the diode current is
converted into a voltage (𝑣𝑂𝑈𝑇 ) by a so-called transimpedance amplifier. This amplifier must

16



1.2. Managing Complexity

be fast enough to process the incoming light pulses, which often occur at frequencies of multiple
gigahertz. In addition, the amplifier must obey certain limits on power dissipation, or the system
may become impractical in terms of heat management or power supply requirements.

Figure 1.4.: Photodetector circuit for fiber-optic communication.

Limitations in speed and power dissipation are, in general, among the main concerns in the interface
circuitry of mixed-signal systems. Since new products tend to demand higher performance, the
analog designer is constantly concerned with the design and optimization of system-critical building
blocks, aiming for the best possible performance that can be achieved within the framework of the
target application and process technology.

A specific example for the circuit realization of a transimpedance amplifier is shown in Figure 1.5.
It consists of three transistor stages, each of which serves a specific purpose and design intent. This
is true for most amplifier circuits; even though the full schematic of a particular realization may
be com- plex, it can usually be broken up into smaller sub-blocks that are more easily understood.
Specifi- cally, for the amplifier of Figure 1.5, the experienced designer will recognize that the circuit
consists of a cascade connection of a common-gate, common-source, and common-drain stage.
These sub-blocks form the basis for a large number of analog circuits, and can be viewed as the
“atoms” or fundamental building blocks of analog design. In this module, you will learn to analyze
these blocks from first principles, and to reuse the gained knowledge for the design of more complex
circuits. The circuit of Figure 1.5 will be analyzed in detail in Chapter 6 of this module, building
upon the principles covered in Chapters 2–5.

1.2. Managing Complexity

As evident from the example of Section 1-1-1, modern integrated circuits are highly complex and
require a hierarchical approach in design and analysis. That is, a modern integrated circuit is far
too complex to be fully understood and analyzed in a single sheet schematic at the transistor level.
Typically, a mixed-signal IC is represented by a block diagram as the one shown in Figure 1.2.
At the level of this description, suitable specifications are derived for each block, which may itself
contain several sub-blocks. The blocks and sub-blocks are then designed and optimized until they
meet the desired target specifications.

17



1. Introduction

Figure 1.5.: Example realization of a transimpedance amplifier.

18



1.3. Two-Port Abstraction for Amplifiers

Figure 1.6 illustrates examples of the various levels of abstraction that come into play in the design
of a modern integrated circuit. At the highest level, the constituent elements can be partitioned into
analog and digital blocks. An example of a high-level analog block is an analog-to-digital converter,
whereas a microprocessor is an example of a large digital block. These blocks themselves contain
smaller functional units, as, for example, operational amplifiers in the case of an analog-to-digital
converter. The operational amplifiers themselves contain the aforementioned elementary transistor
stages, which are the main subject of this module.

Figure 1.6.: Levels of abstraction in integrated circuit design.

Interestingly, even at the level of elementary transistor stages, is often not possible to work with
a perfect model or description of the circuit. This is particularly so because the physical effects
in the constituent transistors are highly complex and often impossible to capture perfectly with a
tractable set of equations for hand analysis. Therefore, making proper engineering approximations
in transistor modeling is an important aspect in maintaining a systematic design methodology.
For this particular reason, the presentation in this module follows a “just-in-time” approach for
the modeling of transistor behavior. Rather than deriving a complete transistor model in an
isolated chapter (as done in most texts), we begin with only the basic device properties and increase
complexity throughout the module upon demand, and where needed to gain further insight and
accuracy. With this approach, the reader learns to appreciate the complexity of a refined model,
and will be able to assess and track potential limitations of working with simplified models.

1.3. Two-Port Abstraction for Amplifiers

High-level system block diagrams, such as Figure 1.2 , are typically drawn as unidirectional
flowcharts and do not capture details about the electrical behavior of each connection port and
how certain blocks may interact once they are connected. Unfortunately, electrical signals are
not unidirectional, and connecting two blocks always means that there is some level of interaction
through the voltages and currents at the connection points.

19



1. Introduction

Figure 1.7.: Two-port model of the transimpedance amplifier circuit in Figure 1.5.

Figure 1.8.: General amplifier two-port.

20



1.3. Two-Port Abstraction for Amplifiers

The commonly used linear two-port modeling abstraction for amplifiers and amplifier stages allows
the designer to take these effects into account while maintaining a high level of abstraction. For
instance, the circuit of Figure 1.5 can be approximately modeled as shown in Figure 1.7 (the details
on obtaining this model are discussed later in this module). Each stage of the overall amplifier is
represented via a simplified circuit model that captures its essential features. Once this model is
created, the interaction among stages can be analyzed at this high level of abstraction, without
requiring detailed insight on how each stage is implemented. The two-port modeling approach is
particularly useful in the design of amplifiers, as it can help shape the thought process on how the
various stages should be configured to optimize performance. In the following subsections, we will
review some of the basic concepts of amplifier two-port modeling used in this module.

1.3.1. Amplifier Types

In this module, we model amplifier circuits as blocks that have an input and output port, where
the term “port” refers to a pair of terminals. For each port, we can define input and output
currents and voltages as shown in Figure 1.8. Depending on the intended function, we distinguish
between the four possible amplifier types listed in Table 1-1. For example, an amplifier that takes
an input current and amplifies this current to produce a proportional output voltage is called a
transresistance amplifier. In this context, it is important to emphasize that in a general practical
amplifier circuit, the input and output ports will always carry both nonzero voltages and currents,
and there exist transfer functions between all possible combinations of input/output variables.
What truly defines the type of an amplifier is what the circuit designer deems as the main quantities
of interest in the amplifier’s application.

Table 1.1.: Amplifier types.
Amplfier Type Input Quantity Output Quantity
Voltage Amplifier Voltage Voltage
Current Amplifier Current Current
Transconductance Amplifier Voltage Current
Transresistance Amplifier Current Voltage

Now, in order to model the inner workings of each amplifier type, we can invoke the four corre-
sponding two-port amplifier models shown in Figure 1.9. Each amplifier model has an input and
output resistance (or more generally, a frequency dependent impedance) and a controlled source
to model the amplification.

• In the voltage amplifier model, the controlled source is a voltage-controlled voltage source.
Ideally, the input resistance is infinite (open circuit, no current flow). The ideal output
resistance is zero (ideal voltage source).

• The current amplifier model has a current-controlled current source. Ideally, the input
resistance is zero (short circuit, no voltage across the input port) and the output resistance
is infinite (ideal current source).

• The transconductance amplifier model has a voltage-controlled current source. Ideally,
the input resistance is infinite (open circuit, no current flow). The ideal output resistance is
also infinite (ideal current source).
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• The transresistance or transimpedance1 amplifier model has a current-controlled volt-
age source. Ideally, the input resistance is zero (short circuit, no voltage across the input
port). The ideal output resistance is also zero (ideal voltage source).

From these four models and their ideal behavior, we note that the two-ports containing a voltage-
controlled source should ideally have large input resistance (𝑅𝑖𝑛). This minimizes the signal loss
due to resistive voltage division between the source voltage (𝑣𝑠) and the control voltage (𝑣𝑖𝑛). In
contrast, the two-ports that use a current-controlled source should have small input resistance to
minimize the signal loss due to current division between the source current (𝑖𝑠) and the control
current (𝑖𝑖𝑛). In this context, “large” and “small” refer to the value of 𝑅𝑖𝑛 relative to the source
resistance (𝑅𝑠).

On the output side, if the variable of interest is a voltage, the output resistance (𝑅𝑜𝑢𝑡) should be
small so that only a small amount of the amplified voltage is lost through the division with the load
(𝑅𝐿). Conversely, for a current output, the output resistance should be large to minimize current
division losses. Again, “large” and “small” are taken as relative measures comparing Rout to 𝑅𝐿.

Consider for example the voltage amplifier of Figure 1.9(a). To calculate the transfer function of
the overall circuit (𝑣𝑜𝑢𝑡/𝑣𝑠), the input voltage, including its source resistance, is connected to the
input of the two-port model and the load resistance is connected to the output. The full circuit is
shown in Figure 1.10.

Applying the voltage divider rule at the input and output of the circuit gives

𝑣𝑜𝑢𝑡
𝑣𝑠

= (𝑣𝑖𝑛
𝑣𝑠

) ⋅ 𝐴𝑣 ⋅ (𝑣𝑜𝑢𝑡
𝑣𝑥

) = ( 𝑅𝑖𝑛
𝑅𝑖𝑛 + 𝑅𝑠

) ⋅ 𝐴𝑣 ⋅ ( 𝑅𝐿
𝑅𝐿 + 𝑅𝑜𝑢𝑡

) (1.1)

As we can see from this expression, the overall voltage gain is maximized when the amplifier has a
large input resistance (relative to 𝑅𝑠) and a small output resistance (relative to 𝑅𝐿). For the ideal
case of infinite input resistance and zero output resistance, 𝑣𝑜𝑢𝑡/𝑣𝑠 becomes equal to 𝐴𝑣.

For the sake of compact notation, we will often want to use a symbol for the overall circuit gain.
The notation used in this module uses primed variables to distinguish between the gain of the
controlled source and the gain of the overall amplifier circuit. For example, for the above-discussed
voltage amplifier we define 𝐴′

𝑣 = 𝑣𝑜𝑢𝑡 ⁄ 𝑣𝑠. This notation is meant to emphasize the connection
between the two symbols. 𝐴′

𝑣 is usually smaller than 𝐴𝑣, but can approach 𝐴𝑣 for ideal source and
load configurations.

Example 1-1: Transfer Function Transconductance Amplifier.

For the transconductance amplifier circuit in Figure 1.11, calculate the overall transconductance
𝐺′

𝑚 = 𝑖𝑜𝑢𝑡 ⁄ 𝑣𝑠.

SOLUTION

Applying the voltage divider rule at the input and the current divider rule at the output yields the
following result:

𝐺′
𝑚 = 𝑖𝑜𝑢𝑡

𝑣𝑠
= (𝑣𝑖𝑛

𝑣𝑠
) ⋅ 𝐺𝑚 ⋅ (𝑖𝑜𝑢𝑡

𝑖𝑥
) = ( 𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑅𝑠
) ⋅ 𝐺𝑚 ⋅ ( 𝑅𝑜𝑢𝑡

𝑅𝐿 + 𝑅𝑜𝑢𝑡
)

1The term transimpedance is sometimes used to refer to an amplifier that is primarily meant to realize a transresis-
tance. Referring to “impedance” highlights the fact that the transfer function will usually be frequency-dependent.
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1.3. Two-Port Abstraction for Amplifiers

Figure 1.9.: Two-port amplifier models with input source and load: (a) voltage amplifier, (b) current
amplifier, (c) transconductance amplifier, and (d) transresistance amplifier
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Figure 1.10.: Voltage amplifier with connected source and load resistances.

Figure 1.11.: Figure Ex 1-1
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1.3. Two-Port Abstraction for Amplifiers

Thus, the overall transconductance gain is maximized when the amplifier has a large input resistance
(relative to 𝑅𝑠) and a large output resistance (relative to 𝑅𝐿). For the ideal case of infinite input
and output resistances, 𝐺′

𝑚 becomes equal to 𝐺𝑚.

As a final remark for this sub-section, it is important to recognize that all of the models in Figure 1.9
can be used interchangeability to describe the exact same electrical behavior (see Problem P1-1).
For instance, a voltage amplifier model can be converted into a transconductance amplifier model
by applying a Thevénin to Norton transformation for the controlled source.

A corollary to this equivalence is that we can for example use a transconductance amplifier model
to describe a voltage amplifier circuit. This is illustrated through the circuit of Figure 1.12, which
is electrically equivalent to that of Figure 1.10 (see Problem P1-2). Note that the output is taken
as the voltage across the output port instead of the output current; this indicates that the circuit
is viewed as a voltage amplifier. Just as in the original circuit of Figure 1.10, we require a large
input resistance and small output resistance for this circuit to maximize the overall voltage gain.

The choice of amplifier model depends on several factors. At first glance, it seems natural to model
each amplifier type using its “native” model that directly corresponds to the intended function. For
example, we could always describe a voltage amplifier using the corresponding voltage amplifier
model that contains a voltage controlled voltage source. However, as we shall see throughout this
module, it is sometimes more convenient to align the amplifier model with the physical amplification
mechanism or a structural feature of the underlying transistor circuit. For instance, the common-
source voltage amplifier discussed in Chapter 2 naturally invokes a transconductance-based model
due to the physical model of the employed transistor.

1.3.2. Unilateral versus Bilateral Two-Ports

All of the two-port models shown in Figure 1.9 are called unilateral, because they can only prop-
agate a signal from the input port to the output port and not the other way around. For instance,
injecting a current into the output port of the current amplifier of Figure 1.9(b) will not induce a
current at the input port. Unfortunately, many practical transistor circuits are not unilateral, and
exhibit bilateral behavior when analyzed in detail, and especially at high frequencies.

Figure 1.12.: Voltage amplifier with an underlying transconductance amplifier model
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Figure 1.13.: (a) Example of a bilateral current amplifier. (b) Corresponding bilateral current
amplifier two-port model.
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An example of a bilateral current amplifier is shown Figure 1.13(a). Note that in this circuit,
resistor 𝑅2 couples the input and output networks and it can therefore transfer currents in both
directions. Consequently, the unilateral model of Figure 1.9(b) cannot perfectly represent this
circuit. When it is desired to capture the bilateral behavior, the two-port model in Figure 1.13(b)
could be employed in principle. Here, the controlled source Air models the reverse current transfer
from the output back to the input. Alternatively, one could employ other bilateral and more general
two-port models based on admittance parameters (𝑌 ), impedance parameters (𝑍), and hybrid or
inverse-hybrid parameters (𝐻 or 𝐺); see advanced circuit design texts such as (Gray et al. 2009a).
These models are particularly useful when reverse transmission (i.e., feedback from the output to
the input) is incorporated in the circuit as part of the intended design.

There are two reasons why we will work exclusively with unilateral two-port approximations in
this module. First, the circuits considered are designed primarily to implement forward gain rather
than reverse gain; feedback circuits are not treated in this module. For example, referring to the
model of Figure 1.13(b), the reverse gain Air will be negligibly small in any current amplifier circuit
that we will consider. Second, a clear drawback of working with bilateral two-port models would be
a significant increase in analysis complexity. As we have seen in Example 1-1, the overall transfer
function of a unilateral two-port circuit can be written by applying simple voltage and current
divider rules. This also extends to cascade connections of multiple two-ports. For example, the
overall transfer function of the circuit in Figure 1.7 is easily written by inspection, without requiring
extensive algebra. With reverse transmission included, the transfer function analysis will generally
require solving a linear system of equations. In light of the fact that we do not intend to design
circuits in this module that have significant reverse transmission, this increase in complexity is not
welcome, and would also hinder us from developing intuition from inspection-driven analysis.

1.3.3. Construction of Unilateral Two-Port Models

We will now describe the general procedures to calculate the controlled sources, as well as the input
and output resistances, for the unilateral two-port models of Figure 1.9. The approach is based on
applying test voltages and currents to find the desired model parameters.

The most important parameter of any amplifier circuit is its gain. To identify the gain parameters
for the models of Figure 1.9(a)-(d), we apply the tests shown in Figure 1.14(a)-(d), respectively.

• To calculate the gain term 𝐴𝑣 of a voltage amplifier model, we apply a test voltage at the
input with zero source resistance and measure the open-circuit output voltage. 𝐴𝑣 = 𝑣𝑜𝑐/𝑣𝑡
is therefore also called the open-circuit voltage gain.

• To calculate the gain term 𝐴𝑖 of a current amplifier model, we apply a test current at the
input with infinite source resistance and measure the short-circuit output current. 𝐴𝑖 = 𝑖𝑠𝑐/𝑖𝑡
is therefore also called the short-circuit current gain.

• To calculate the gain term 𝐺𝑚 of a transconductance amplifier model, we apply a test voltage
at the input with zero source resistance and measure the short-circuit output current to find
𝐺𝑚 = 𝑖𝑠𝑐/𝑣𝑡.

• To calculate the gain term 𝑅𝑚 of a transresistance amplifier model, we apply a test current
at the input with infinite source resistance and measure the open-circuit output voltage to
find 𝑅𝑚 = 𝑣𝑜𝑐/𝑣𝑖𝑡.
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Figure 1.14.: Method to calculate two-port amplifier model parameters: (a) voltage gain 𝐴𝑣, (b)
current gain 𝐴𝑖, (c) transconductance 𝐺𝑚, (d) transresistance 𝑅𝑚, (e) input resistance
𝑅𝑖𝑛, and (f) output resistance 𝑅𝑜𝑢𝑡.
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1.3. Two-Port Abstraction for Amplifiers

The rationale behind these tests can be understood by considering, for example, the case of the
voltage amplifier model of Figure 1.9(a). When driven with an ideal voltage source, the effect of
any resistance at the input port is eliminated, and the controlled source is directly stimulated by
the applied test source (without any voltage division). Likewise, by measuring the resulting output
voltage open-circuited, any resistance in series with the controlled source has no effect and the
measurement therefore accurately extracts the parameter 𝐴𝑣. Similar explanations apply to the
test cases for the remaining amplifier models.

The test setup for extracting the input and output resistances for all amplifier models is shown in
Figure 1.14(e), and (f), respectively.

• To calculate the input resistance 𝑅𝑖𝑛 we apply a test voltage and measure the current
coming from the test source, or apply a test current and mea- sure the voltage across the test
source. In this test, the load resistance (𝑅𝐿) must be connected to the output port as shown
in Figure 1.14(e).

• To calculate the output resistance 𝑅𝑜𝑢𝑡, we apply either a test voltage or a test current
source at the output port and measure the respective current or voltage from the source.
Here, the input source must be set equal to zero. This means that input voltage sources are
shorted and input current sources are open-circuited. Only the source resistance (𝑅𝑆) is left
across the input terminals as shown in Figure 1.14(f).

The above procedures extract the input and output resistances perfectly and without any approxi-
mations, even if the circuit is bilateral. As we shall see through the examples below, 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡
do not depend on 𝑅𝐿 and 𝑅𝑆, respectively, in a perfectly unilateral amplifier. However, this is not
the case in a bilateral amplifier, and therefore the general procedure includes 𝑅𝐿 and 𝑅𝑆 in the
test setup.

In summary, the above procedures for measuring unilateral two-port model parameters aim at
finding the best possible unilateral representation of an arbitrary amplifier circuit, which itself may
or may not be unilateral. The obtained models are approximate when the amplifier is bilateral, since
they do not include a controlled source that captures reverse transmission from the output back
to the input. In most cases considered in this module, the reverse transmission term is negligible.
Exceptions will be highlighted and treated as appropriate.

Example 1-2: Two-Port Model Calculations for a Unilateral Amplifier

For the transconductance amplifier in Figure 1.15, calculate the following two-port model param-
eters: the transconductance 𝐺𝑚, the input resistance 𝑅𝑖𝑛, and the output resistance 𝑅𝑜𝑢𝑡. Also,
compute the overall transfer function 𝐺′

𝑚 = 𝑖𝑜𝑢𝑡 ⁄ 𝑣𝑠.

SOLUTION

To find the transconductance, we short the output port and apply an ideal test voltage source (𝑣𝑡)
at the input (see Figure 1.15). From this circuit, we see that

𝐺𝑚 = 𝑖𝑠𝑐
𝑣𝑡

=
𝑔𝑚𝑣𝑥 ⋅ 𝑅3

𝑅3+𝑅4

𝑣𝑡
=

𝑔𝑚𝑣𝑥 ⋅ 𝑅2
𝑅1+𝑅2

⋅ 𝑅3
𝑅3+𝑅4

𝑣𝑡
= 𝑔𝑚 ⋅ 𝑅2

𝑅1 + 𝑅2
⋅ 𝑅3

𝑅3 + 𝑅4

Next, to find 𝑅𝑖𝑛, we apply a test voltage at the input and connect the load resistance 𝑅𝐿 at
the output (Figure 1.16). From this circuit, we find that the input resistance is simply the series
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Figure 1.15.: Figure Ex1-2A

connection of 𝑅1 and 𝑅2, i.e., 𝑅𝑖𝑛 = 𝑅1 + 𝑅2. Note that the output network does not influence
this result.

Finally, to find 𝑅𝑜𝑢𝑡, we apply a test voltage at the output and connect the source resistance 𝑅𝑆
across the input port (the source 𝑣𝑠 is replaced by a short), (see Figure 1.16(c)). In the resulting
circuit, 𝑣𝑥 must be zero, because no current is flowing in the input network. Thus, the controlled
source carries no current and we conclude that 𝑅𝑜𝑢𝑡 = 𝑅3 + 𝑅4.

In order to compute the transfer function of the complete circuit, we can reuse the result obtained
in Example 1-1.

𝐺′
𝑚 = 𝑖𝑜𝑢𝑡

𝑣𝑠
= ( 𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑅𝑠
) ⋅ 𝐺𝑚 ⋅ ( 𝑅𝐿

𝑅𝐿 + 𝑅𝑜𝑢𝑡
)

Substituting 𝐺𝑚, 𝑅𝑖𝑛, and 𝑅𝑜𝑢𝑡 from the above calculation yields the final result.

𝐺′
𝑚 = 𝑖𝑜𝑢𝑡

𝑣𝑠
= 𝑔𝑚𝑅2𝑅3

(𝑅1 + 𝑅2 + 𝑅𝑆)(𝑅𝐿 + 𝑅3 + 𝑅4)

In the preceding example, we have seen that the source and load resistances have no effect on the
extracted two-port parameters. In the following example, we will investigate a bilateral circuit to
show that in general, the input and output resistances depend on 𝑅𝑆 and 𝑅𝐿, which must therefore
always be included in the general two-port modeling calculations.

Example 1-3: Two-Port Model Calculations for a Bilateral Amplifier

For the current amplifier in Figure 1.13(a), calculate the following unilateral two-port model param-
eters: the current gain 𝐴𝑖, the input resistance 𝑅𝑖𝑛, and the output resistance 𝑅𝑜𝑢𝑡. Also, compute
the overall transfer function 𝑖𝑜𝑢𝑡/𝑣𝑠 using the obtained unilateral two-port model. Compare the
result to a direct KCL-based analysis of the transfer function. Assume that the circuit is driven
by a current source with resistance 𝑅𝑆 and loaded by a resistance 𝑅𝐿. For algebraic simplicity,
assume 𝑅1 = 1/𝑔𝑚 (this case corresponds to the common-gate amplifier circuit covered in Chapter
4).

SOLUTION
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Figure 1.16.: Figure Ex1-2B
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To find the current gain Ai, we short the output port and apply an ideal test current source (𝑖𝑡) at
the input (see Figure 1.17(a)). From this circuit, we see that

𝑣𝑖𝑛 = (𝑔𝑚 + 1
𝑅2

)
−1

⋅ 𝑖𝑡

and

𝑖𝑠𝑐 = −(𝑔𝑚 + 1
𝑅2

) ⋅ 𝑣𝑖𝑛

Thus, Ai = isc/it = –1.

Next, to find 𝑅𝑖𝑛, we apply a test voltage at the input and connect the load resistance 𝑅𝐿 at the
output (Figure 1.17(b)). From this circuit, we note that the input resistance is not easily identified
by inspection. Hence we write KCL for the two nodes of the circuit (𝑣𝑡 and 𝑣𝑜𝑢𝑡).

0 = −𝑖𝑡 + 𝑔𝑚𝑣𝑡 + 𝑣𝑡 − 𝑣𝑜𝑢𝑡
𝑅2

0 = −𝑔𝑚𝑣𝑡 + 𝑣𝑜𝑢𝑡
𝑅𝐿

+ 𝑣𝑡 − 𝑣𝑜𝑢𝑡
𝑅2

Solving this system of equations yields

𝑅𝑖𝑛 = 𝑣𝑡
𝑖𝑡

= 𝑅2 + 𝑅𝐿
1 + 𝑔𝑚𝑅2

=
1 + 𝑅𝐿

𝑅2

𝑔𝑚 + 1
𝑅2

Note from this result that 𝑅𝑖𝑛 depends on 𝑅𝐿, as mentioned previously; this dependency stems
from the bilateral structure of the circuit. Also note that Rin approaches 1/𝑔𝑚 when 𝑅2 is large
compared to 𝑅𝐿 and $ 1 / g_m$. We will revisit this important point in Chapter 4, in the context
of a common-gate amplifier circuit.

Figure 1.17.: Figure Ex1-3

Now, to find 𝑅𝑜𝑢𝑡, we apply a test voltage at the output and connect the source resistance 𝑅𝑆
across the input port Figure 1.17. Again, we must write KCL at the two circuit nodes and solve
the resulting system of equations. This yields
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𝑅𝑜𝑢𝑡 = 𝑣𝑡
𝑖𝑡

= 𝑅2𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆

Again, note that 𝑅𝑜𝑢𝑡 is a function of 𝑅𝑆; this is the case for any bilateral circuit.

Finally, to compute the transfer function based on the obtained unilateral model, we consider the
circuit shown in Figure 1.17(d). By inspection, we see that

𝐴′
𝑖
𝑖𝑜𝑢𝑡
𝑖𝑠

= ( 𝑅𝑆
𝑅𝑖𝑛 + 𝑅𝑆

)𝐴𝑖
𝑅𝑜𝑢𝑡

𝑅𝐿 + 𝑅𝑜𝑢𝑡

Substituting 𝐴𝑖, 𝑅𝑖𝑛, and 𝑅𝑜𝑢𝑡 from the above calculation into this expression yields

𝐴′
𝑖,𝑇 𝑤𝑜−𝑃𝑜𝑟𝑡 = 𝑖𝑜𝑢𝑡

𝑖𝑠
= −𝑅𝑆(1 + 𝑔𝑚𝑅2)(𝑅2 + 𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆)

(𝑅𝐿 + 𝑅2 + 𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆)2

We now wish to compare this result to the accurate transfer function of the circuit, obtained by
direct calculation and without approximating the circuit as a unilateral two-port. For this purpose,
we consider the full circuit shown in Figure 1.17(e) and write KCL for its two nodes.

0 = −𝑖𝑠 + 𝑔𝑚𝑣𝑖𝑛 + 𝑣𝑖𝑛
𝑅𝑆

+ 𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡
𝑅2

0 = −𝑔𝑚𝑣𝑖𝑛 + 𝑣𝑜𝑢𝑡
𝑅𝐿

+ 𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛
𝑅2

Solving this system of equations for 𝑣𝑜𝑢𝑡 and substituting 𝑖𝑜𝑢𝑡 = −𝑣𝑜𝑢𝑡/𝑅𝐿 yields

𝐴′
𝑖,𝐸𝑥𝑎𝑐𝑡 = 𝑖𝑜𝑢𝑡

𝑖𝑠
= − 𝑅𝑆(1 + 𝑔𝑚𝑅2)

𝑅𝐿 + 𝑅2 + 𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆

The discrepancy factor between the two results is given by

𝐴′
𝑖,𝑇 𝑤𝑜−𝑃𝑜𝑟𝑡
𝐴′

𝑖,𝐸𝑥𝑎𝑐𝑡
= 𝑅2 + 𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆

𝑅𝐿 + 𝑅2 + 𝑅𝑆 + 𝑔𝑚𝑅2𝑅𝑆
=

1 + 𝑅𝑆( 1
𝑅2

+ 𝑔𝑚)

1 + 𝑅𝐿
𝑅2

+ 𝑅𝑆( 1
𝑅2

+ 𝑔𝑚)

From this result, we see that the discrepancy factor approaches unity (no error) when 𝑅2 is much
larger than 𝑅𝐿, a condition that is often satisfied in practice (the ideal load for a current amplifier
is a short circuit). In this case, the unilateral two-port model will accurately describe the behavior
of the circuit.

The outcome of the above example captures the main spirit in which we justify relying on unilateral
two-port models in this module. Even though the considered amplifier is strictly speaking bilateral,
a unilateral model describes its behavior to within the desired engineering accuracy, provided that
reason- able boundary conditions hold.
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1.4. Integrated Circuit Design versus Printed Circuit Board Design

In the design of analog circuits, the underlying technology has a significant impact on the choice of
architecture, because it tends to restrict the availability and specification range of the underlying
active and passive components. For instance, a designer working with discrete components on a
printed circuit board may be subjected to the following constraints:

• Limit the component count below 100 elements to achieve a small board area.

• Resistors can be chosen in the range of 1Ω–10MΩ.

• Capacitors can be chosen in the range of 1pF–10,000 �F.

• The resistor and capacitor values match to within 1–10%.

• The available (discrete) bipolar junction transistors match to within 20% in their critical
parameters.

In contrast, the designer of a CMOS system-on-chip may face the constraints summarized below:

• Avoid using resistors; use as many MOSFET transistors as needed (within reasonable limits,
on the order of hundreds to several thousands) to realize the best possible circuit implemen-
tation.

• Capacitors can be chosen in the range of 10 fF–100 pF.

• The critical parameters in the MOSFET transistors be made to match to within 1%, but vary
by more than 30% for different fabrication runs.

• Capacitors of similar size can match to within 0.1%, but vary by more than 10% for different
fabrication runs.

As a consequence of the vastly different constraints that apply to the design of analog circuits in
CMOS technology, the resulting practical and preferred circuit architectures differ substantially
from the ones that would be used in a printed circuit board design. For example, a discrete voltage
amplifier may utilize large AC coupling capacitors to simplify and decouple the biasing of the
individual gain stages (see example in Figure 1.18). In contrast, it is typically not possible to use
AC coupling techniques (except for very high-frequency designs) in integrated circuits, primarily
due to the restriction on maximum capacitor size.

The material covered in this module is primarily concerned with analog integrated circuit design.
While this choice does not affect many of the key principles used in the analysis and the discussed
circuits, it does affect the architectural choices made in arriving at a practical design. For instance,
large AC coupling capacitors are not used throughout the discussion. Also, where appropriate, we
will invoke certain assumptions about the typical matching of component parameters in CMOS to
eliminate impractical design choices.
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Figure 1.18.: Example of a discrete amplifier circuit using bipolar junction transistors (BJTs).

1.5. Prerequisites and Advanced Material

The reader of this module is expected to be familiar with the basis concepts of linear circuit analysis
(see Ulaby and Maharbiz 2013), including

• Passive components (resistors, capacitors)

• Kirchhoff’s voltage and current laws (KVL and KCL)

• Independent and dependent voltage and current sources; Thevénin and Norton representation
of controlled sources

• Two-port representation of circuits; calculation of port resistances and frequency dependent
impedances

• Manipulation of complex variables and numbers

• Phasor analysis and Laplace domain representation of passive circuit elements

• Bode plots

The derivations of device models in this module assume familiarity with basic solid-state physics
and electrostatics as treated in introductory texts on solid-state device physics (see Pierret 1996).
A few sections of this module are marked with an asterisk (*) to indicate advanced material that
may in some cases go beyond the learning goals of an introductory course. These sections can be
skipped at the instructor’s discretion without affecting the overall flow and context.
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1.6. Notation

This module follows the notation for signal variables as standardized by the IEEE. Total signals are
composed of the sum of DC quantities and small signals. For example, a total input voltage 𝑣𝐼𝑁
is the sum of a DC input voltage 𝑉𝐼𝑁 and a small-signal voltage 𝑣𝑖𝑛. The notation is summarized
below.

• Total quantity has a lowercase variable name and uppercase subscript

• DC quantity has an uppercase variable name and uppercase subscript

• Small-signal quantity has a lowercase variable name and lowercase subscript

1.7. Summary

This chapter offered a brief motivation for the topics covered in this module, which focuses on
the analysis and design of elementary amplifier stages in CMOS technology. These elementary
stages can be viewed as the “atoms” of analog circuit design and a thorough understanding of the
blocks is a necessary prerequisite for the design of advanced analog circuits design, as for instance
in the context of large systems-on-chip. At all levels of circuit design, complexity is managed
using hierarchical abstraction and model simplification using proper engineering approximations.
The unilateral two-port models reviewed in Section 1-3 and used throughout this module, are an
example of such abstractions.

Figure 1.19.: Figure P1-1

1.8. Problems

P1.1 Given the amplifier circuit in Figure 1.19 (a) Find the input and output resistance. (b)
Construct an equivalent circuit using a voltage amplifier two-port model and determine all model
parameters symbolically. (c) Repeat part (b) for a current amplifier model. (d) Repeat part (b) for
a transconductance amplifier model. (e) Repeat part (b) for a transresistance amplifier model.
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P1.2 Convince yourself that the circuits of Figure 1.10 and Figure 1.12 are equivalent by showing
sym- bolically that both circuits have the same overall voltage gain 𝐴′

𝑣 = 𝑣𝑜𝑢𝑡 ⁄ 𝑣𝑠.

P1.3 You are given an input voltage source with a source resistance, 𝑅𝑆. (a) Use the unilateral
voltage amplifier two-port model found in P1.1 to find the overall voltage gain when the amplifier
is driving a load resistor 𝑅𝐿. (b) Specify whether the resistances 𝑟1, 𝑟𝑖, 𝑟𝑜, 𝑟2 in the small signal
model should be increased, be decreased, or remain the same to improve the overall voltage gain.

P1.4 You are given an input current source with a source resistance, 𝑅𝑆. (a) Use the unilateral
current amplifier two-port model found in P1.1 to find the overall current gain when the amplifier
is driving a load resistor 𝑅𝐿. (b) Specify whether the resistances 𝑟1, 𝑟𝑖, 𝑟𝑜, 𝑟2 in the small-signal
model should be increased, be decreased, or remain the same to improve the overall current gain.

P1.5 Given the circuit model in Figure 1.20 for an amplifier circuit (with 𝑟𝑖 and 𝑟𝑜 removed and
𝑟1=𝑟2=0)

(a) Find the input and output resistance. Note that since this circuit is bilateral, 𝑅𝑆 must be
considered when computing 𝑅𝑜𝑢𝑡, and 𝑅𝐿 must be considered when computing 𝑅𝑖𝑛.

(b) Construct a two-port model for a unilateral voltage amplifier.
(c) Construct a two-port model for a unilateral current amplifier.
(d) Construct a two-port model for a unilateral transconductance amplifier.
(e) Construct a two-port model for a unilateral transresistance amplifier.

Figure 1.20.: Figure P1-5

P1.6 Consider the two-port model of a voltage amplifier as shown in Figure 1.9(a) with the following
parameters: 𝐴𝑣 = 10, 𝑅𝑖𝑛 = 5 kΩ, and 𝑅𝑜𝑢𝑡 = 100 Ω.

(a) Draw the two-port model for a transresistance amplifier by conversion from the voltage am-
plifier model.

(b) Draw the two-port model for a transconductance amplifier by conversion from the voltage
amplifier model.
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(c) Draw the two-port model for a current amplifier by conversion from the voltage amplifier
model.

P1.7 Compute the transresistance 𝑣𝑜𝑢𝑡/𝑖𝑖𝑛 for the circuit of Figure 1.7 using the following param-
eters: 𝐴𝑖1 = 1, 𝐺𝑚2 = 10 mS, 𝐴𝑣3 = 0.8, 𝑅𝑖𝑛1 = 50 Ω, 𝑅𝑜𝑢𝑡1 = 500 Ω, 𝑅𝑜𝑢𝑡2 = 1 kΩ, and 𝑅𝑜𝑢𝑡3
= 100 Ω. Using this result, lump the entire circuit into a single transresistance amplifier as shown
in Figure 1.9(d). Draw the resulting model, including 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡.

P1.8 Consider the amplifier circuit of Figure 1.13

(a) with 𝑅1 = 1/𝑔𝑚 = 1 kΩ and 𝑅2 = 100 kΩ and 𝑅𝑆 = 𝑅𝐿 = 10 kΩ. Compute all component
values for the bilateral two-port current amplifier model of Figure 1.13

(b) Note that 𝐴𝑖𝑓 , 𝑅𝑖𝑛,and 𝑅𝑜𝑢𝑡 can be described as explained in Section 1-3. Similar to 𝐴𝑖𝑓 ,
𝐴𝑖𝑟 is found by short-circuiting the input port and by injecting a test current into the output
port. Compare the relative magnitude of 𝐴𝑖𝑓 and 𝐴𝑖𝑟.
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2. Transfer Characteristic of the
Common-Source Voltage Amplifier

Chapter Objectives

• Review the MOSFET device structure and basic operation as described by the square-
law model.

• Introduce large- and small-signal analysis techniques using the common-source voltage
amplifier as a motivating example.

• Derive a small-signal model for the MOSFET device, consisting of a transconductance
and output resistance element.

• Provide a feel for potential inaccuracies and range limitations of simple modeling ex-
pressions.

2.1. First-Order MOSFET Model

The device-level derivations of this section assume familiarity with basic solid-state physics and
electrostatics. For a ground-up treatment from first principles, the reader is referred to introductory
solid-state device material (see Reference 1).

2.1.1. Derivation of I-V Characteristics

The basic structure of an enhancement mode n-channel MOSFET is shown in Figure 2.1(a).
It consists of a lightly doped p-substrate (bulk), two heavily doped n-type regions (source and
drain) and a conductive gate electrode that is isolated from the substrate using a thin silicon
dioxide layer of thickness 𝑡𝑜𝑥. Other important geometry parameters of this device include the
channel length 𝐿 (distance between the source and drain) and the channel width 𝑊 .

As we shall see, the name “n-channel” stems from the fact that this device conducts current by
forming an n-type layer underneath the gate. A p-channel device can be constructed similarly
using an n-type bulk and p-type source/drain regions. The differentiating details between n- and
p-channel devices are summarized in Section 2-1-2. For the time being, we will use the n-channel
device to discuss the basic principles.

In order to study the electrical behavior of a MOSFET, it is useful to define a schematic symbol and
conventions for electrical variables as shown in Figure 2.1(b) . The variables 𝑉𝐺𝑆, 𝑉𝐷𝑆, and 𝑉𝐵𝑆
describe the voltages between the respective terminals using the commonly used ordered subscript
convention 𝑉𝑋𝑌 = 𝑉𝑋 – 𝑉𝑌 . The current flowing into the drain node is labeled 𝐼𝐷.
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

Figure 2.1.: (a) Cross-section of an n-channel MOSFET.

It is important to note that the MOSFET device considered here is perfectly symmetric; i.e.,
the drain and source terminal labels can be interchanged. It is a common convention to assign the
source to the lower potential of these two terminals, since this terminal is the source of electrons
that enable the flow of current. We will see later that this convention, together with the arrow
that marks the source (and the direction of current flow), provides useful intuition when reading a
larger circuit schematic.

We now begin our analysis of the MOSFET device by considering the condition shown in
Figure 2.2(a), where the bulk and source are connected to a reference potential (GND), 𝑉𝐺𝑆 =
0 𝑉 and 𝑉𝐷𝑆 = 0 𝑉 . Under this condition, the drain and source terminals are isolated by two
reverse-biased pn-junctions and their depletion regions, which prevent any significant flow of
current. Applying a positive voltage at the drain (𝑉𝐷𝑆 > 0 𝑉 ) increases the reverse-bias at the
drain-bulk junction and will only increase the width of the depletion region at the drain, while 𝐼𝐷
= 0 is still maintained (to first-order).

Consider now 𝑉𝐺𝑆 = 0 as shown in Figure 2.2(b). This positive voltage at the gate attracts
electrons from the source. With increasing 𝑉𝐺𝑆, a larger amount of electrons is supplied by the
source, and ultimately, a so-called inversion layer forms underneath the gate. The voltage 𝑉𝐺𝑆
at which a significant number of mobile electrons underneath the gate become available is called
the threshold voltage of the transistor, or 𝑉𝑡. In order to differentiate the threshold voltages
and other device parameters of n-and p-channel devices, we will utilize the subscripts n and p
throughout this module. E.g., we denote the threshold voltage for n-channels and p-channels as
𝑉𝑇 𝑛 and 𝑉𝑇 𝑝., respectively.

With the inversion layer under the gate, the drain and source regions are now “connected”
through a conductive path and any voltage between these terminals (𝑉𝐺𝑆 > 0) will result in a flow
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2.1. First-Order MOSFET Model

Figure 2.2.: (a) n-channel MOSFET with 𝑉𝐺𝑆 = 0, (b) 𝑉𝐺𝑆 > 𝑉𝑇 𝑛,
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

of drain current. How can we calculate this current? In order to answer this question, the following
approximations are useful:

1. The current primarily depends on the number of mobile electrons in the channel times their
velocity.

2. The number of mobile electrons in the channel is set by the vertical electric field from the
gate to the conductive channel (gradual channel approximation).

3. The threshold voltage is constant along the channel; this assumption neglects the so-called
body effect.

4. The velocity of the electrons traveling from the source to the drain is proportional to the
lateral electric field in the channel.

Figure 2.2(b) establishes relevant variables for further analysis. The auxiliary variable 𝑦 ranges
from 0 to 𝐿 and is used to express electrical quantities as a function of the distance from the
source. The inversion layer charge density (per unit area) and voltage at position 𝑦 in the channel
are denoted as 𝑄𝑛(𝑦) and 𝑉𝑦,respectively. With these conventions in place, we can translate the
above-listed assumptions into the following equations:

𝐼𝐷 = −𝑊 ⋅ 𝑄𝑛 ⋅ 𝑣(𝑦) (2.1)

𝑄𝑛(𝑦) = −𝐶𝑜𝑥 ⋅ (𝑉𝐺𝑆 − 𝑉 (𝑦) − 𝑉𝑇 𝑛) (2.2)

𝑣(𝑦) = −𝜇𝑛 ⋅ 𝐸𝑦 (2.3)

In these expressions, 𝑣 is the velocity of the carriers, 𝐶𝑜𝑥 is the gate capacitance per unit area
(between the gate electrode and the conductive channel). The term 𝜇𝑛 is called mobility, and it
relates the drift velocity of the carriers to the local electric field.

As indicated in Equation 2.2, the mobile charge density at coordinate 𝑦 depends on the local
potential, since the voltage across the oxide is given by 𝑉𝐺𝑆 – 𝑉 (𝑦). An inversion layer is present
at any location under the gate where this voltage difference is larger than the threshold (𝑉𝑇 𝑛).
Assuming that the inversion layer extends from source to drain as drawn in Figure 2.2(b), we have
𝑉 (𝐿) = 𝑉𝐷𝑆 and 𝑄𝑛(𝐿) = –𝐶𝑜𝑥 (𝑉𝐺𝑆 – 𝑉𝑇 𝑛 – 𝑉𝐷𝑆). This implies that 𝑉𝐷𝑆 cannotexceed 𝑉𝐺𝑆 –
𝑉𝑇 𝑛 for an inversion layer that extends across the entire channel. For the time being, we will solve
for the drain current for this condition and later extend the obtained result for the case of 𝑉𝐷𝑆 =
𝑉𝐺𝑆 – 𝑉𝑇 𝑛.

Now, by combining Equation 2.1 through Equation 2.3 and noting that the electric field is given
by 𝐸(𝑦) = −𝑑𝑉 (𝑦)/𝑑𝑦 , we can write

𝐼𝐷 = 𝜇𝑛𝐶𝑜𝑥𝑊 ⋅ (𝑉𝐺𝑆 − 𝑉𝑦 − 𝑉𝑇 𝑛)𝑑𝑉𝑦
𝑑𝑦 (2.4)

This result describes the current density profile along the channel. The terminal current, 𝐼𝐷, can
be found by separating the variables and integrating along the direction of 𝑦
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∫
𝐿

0
𝐼𝐷 𝑑𝑦 = 𝜇𝑛𝐶𝑜𝑥𝑊 ∫

𝑉𝐷𝑆

0
(𝑉𝐺𝑆 − 𝑉 (𝑦) − 𝑉𝑇 𝑛) 𝑑𝑉 (2.5)

which yields a closed-form solution for the drain current

𝐼𝐷 = 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛 − 𝑉𝐷𝑆

2 ) 𝑉𝐷𝑆 (2.6)

Note that this expression is valid for 𝑉𝐷𝑆 < 𝑉𝐺𝑆 – 𝑉𝑇 𝑛, as assumed above. In order to extend the
obtained result for 𝑉𝐷𝑆 = 𝑉𝐺𝑆 – 𝑉𝑇 𝑛, we continue by inspecting the shape of the inversion layer
for various 𝑉𝐷𝑆 (see Figure 2.3). For 𝑉𝐷𝑆 = 0 V [case (a)], no current flows and 𝑉 (𝑦) = 0 for all
𝑦. Provided that 𝑉𝐺𝑆 > 𝑉𝑇 𝑛, a uniform inversion layer exists underneath the gate. For small 𝑉𝐷𝑆
> 0, a current flows in the inversion layer, which causes increasing 𝑉 (𝑦) and decreasing inversion
layer charge along the channel. As 𝑉𝐷𝑆 approaches 𝑉𝐺𝑆 - 𝑉𝑇 𝑛, 𝑄𝑛(𝐿) approaches zero with a point
of diminishing charge at the drain. This effect is called pinch-off.

What happens when we increase 𝑉𝐷𝑆 beyond the point of pinch-off? Further analysis based on
solving the two-dimensional Poisson Equation at the drain predicts that the pinch-off point will
move from 𝐿 to 𝐿–Δ𝐿, where Δ𝐿 is small relative to 𝐿. Even though no inversion layer exists in
the region from 𝐿–Δ𝐿 to 𝐿, the device still conducts current. The charges arriving at 𝑦 = 𝐿–Δ𝐿
are being swept to the drain by the electric field present in the depletion region of the surrounding
pn junction.

To first-order, and neglecting the small change in channel length Δ𝐿, the current becomes
independent of 𝑉𝐷𝑆 and is approximately given by the current at the onset of pinch-off, i.e., at 𝑉𝐷𝑆
= 𝑉𝐺𝑆 – 𝑉𝑇 𝑛. Substituting this condition into Equation 2.6, we obtain

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2 (2.7)

for 𝑉𝐷𝑆 � 𝑉𝐺𝑆 – 𝑉𝑇 𝑛.

Equation 2.6 and Equation 2.7 are plotted in Figure 2.4 as a function of 𝑉𝐷𝑆 and some fixed 𝑉𝐺𝑆
> 𝑉𝑇 𝑛. The operating region for 𝑉𝐷𝑆 < 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 is commonly called the triode region. This
name stems from the direct dependence of the drain current on the drain-source voltage, which is
qualitatively similar to the behavior of vacuum tube “triodes.” The region 𝑉𝐷𝑆 � 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 is called
the saturation region due to the saturation in current at large 𝑉𝐷𝑆. In this region, the device
operates essentially like a current source; the current is (to first-order) independent of the applied
𝑉𝐷𝑆 and 𝐼𝐷 = 𝐼𝐷𝑠𝑎𝑡 = constant. The quantity 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 is often called gate overdrive.

The drain-source voltage at which the drain current saturates is called 𝑉𝐷𝑆𝑎𝑡. From the above
first-order analysis, it is clear that 𝑉𝐷𝑆𝑎𝑡 = 𝑉𝐺𝑆 – 𝑉𝑇 𝑛. Nonetheless, it is useful to distinguish
between these two quantities, because they may differ significantly when a more elaborate device
model is used. 𝑉𝐷𝑆𝑎𝑡 is generally not exactly equal to 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 when second-order effects, for
example related to small geometries and modern device structures, are considered.

From a circuit perspective, the device’s behavior in the triode region is similar to a resistor: the
current increases monotonically with increasing terminal voltage. Even though the dependence of
𝐼𝐷 on 𝑉𝐷𝑆 is nonlinear (as seen from Equation 2.6), it is sometimes useful to approximate the
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

Figure 2.3.: Channel profile for varying 𝑉𝐷𝑆.
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2.1. First-Order MOSFET Model

Figure 2.4.: (a) n-channel I-V characteristic for a fixed value of 𝑉𝐺𝑆 – 𝑉𝑇 𝑛= 2V. (b) I-V plots
with varying 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 (drain characteristic). Parameters: 𝜇𝐶𝑜𝑥 = 50 𝜇𝐴/𝑉 2 and
𝑊/𝐿 = 10.

characteristic using a linear I-V law, shown as a dashed line in Figure 2.4(a). For 𝑉𝐷𝑆 ≪ 𝑉𝐺𝑆 –
𝑉𝑇 𝑛 , we can approximate Equation 2.6 as

𝐼𝐷 ≡ 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)𝑉𝐷𝑆 (2.8)

Under this approximation, 𝐼𝐷 depends linearly on 𝑉𝐷𝑆, and we can define the so-called on-
resistance of the device as

𝑅𝑜𝑛 = 𝑉𝐷𝑆
𝐼𝐷

≡ 1
𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛) (2.9)

It is interesting to interpret the dependencies in this expression using basic intuition. Increasing
the aspect ratio 𝑊/𝐿 decreases 𝑅𝑜𝑛 since the conductive path becomes shorter and/or wider; this
is a basic property of any conductor. The on-resistance also decreases with increasing 𝐶𝑜𝑥 and
𝑉𝐺𝑆 – 𝑉𝑇 𝑛; this is because the inversion charge increases with these quantities (𝑄 = 𝐶𝑉 ). Larger
mobility (𝜇𝑛) means that the carriers travel faster for the same applied voltages (electric field).
This increases the current (charge per unit of time) and therefore also results in smaller 𝑅𝑜𝑛.

As seen from Equation 2.7, the magnitude of the drain current in saturation depends on the
square of the gate overdrive 𝑉𝐺𝑆 – 𝑉𝑇 𝑛. This is further illustrated in Figure 2.4(b), which shows
I-V plots for increasing multiples of 𝑉𝐺𝑆1 – 𝑉𝑇 𝑛 = 1V. Doubling and tripling the gate overdrive
increases the saturation current by factors of four and nine, respectively. Note that 𝑅𝑜𝑛 is reduced
only by factors of two and three in these cases, respectively.

The plot in Figure 2.4(b) is often called the drain characteristic, because the drain-source voltage
(as opposed to the gate-source voltage, which is included as a parameter on the curves), is swept
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along the x-axis. Alternatively, the term output characteristic is sometimes used, primarily
because 𝑉𝐷𝑆 can often be viewed as the output port voltage of the device; we will see this in the
example discussed in Section 2-2.

Another commonly used characterization plot for MOSFETs is the so-called transfer character-
istic, which shows the drain current as a function of 𝑉𝐺𝑆 for a fixed value of 𝑉𝐷𝑆. If 𝑉𝐷𝑆 is chosen
large enough such that the device operates in the saturation region for all applied 𝑉𝐺𝑆, 𝐼𝐷 follows
from Equation 2.7 and the plot is shaped like a parabola as drawn in Figure 2.5.

Figure 2.5.: Plot of n-channel drain current as a function of 𝑉𝐺𝑆 (transfer characteristic). Parame-
ters: 𝑉𝐷𝑆 = 5 V, 𝜇𝐶𝑜𝑥 = 50�A/𝑉 2,𝑉𝑇 𝑛 = 0.5 V, and 𝑊/𝐿 = 10.

Table 2.1 summarizes the first-order MOSFET I-V relationships that were discussed in this section.
This set of equations (and extended versions thereof) is often called the square-law model since
one of its primary features is the quadratic dependence of the saturation current on 𝑉𝐺𝑆 – 𝑉𝑇 𝑛.
When working with this device model, it is important to remember that it predicts the behavior
of real MOSFETs only with limited accuracy. This is primarily so because we have made several
simplifications in the model’s derivation. The most significant shortcom ings that result from these
assumptions can be summarized as follows:

46



2.1. First-Order MOSFET Model

1. In reality, the saturation current has a weak dependence on 𝑉𝐷𝑆. This is primarily due to a
shortening of the channel length (Δ𝐿) with increasing 𝑉𝐷𝑆 and also due to the drain voltage
dependence of the mobile charge in the channel. We will address this issue in Section 2-2.

2. For transistors built in modern technologies, several second-order effects related to small
geometries and large electric fields become significant. This typically results in a saturation
current law exponent that is less than two, and 𝑉𝐷𝑆𝑎𝑡 < 𝑉𝐺𝑆 – 𝑉𝑇 𝑛. In addition, the drain
current does not scale strictly proportional to 1/𝐿 and the threshold voltage is not constant,
but a function of the drain voltage.

3. For 𝑉𝐺𝑆 < 𝑉𝑇 𝑛 the device is not completely off, but carries a small current that exponentially
depends on 𝑉𝐺𝑆. This operating region is called the sub-threshold region.

4. For small values of 𝑉𝐺𝑆 < 𝑉𝑇 𝑛, on the order of a few tens of millivolts, the region underneath
the gate is only moderately inverted, and the square law model tends to predict the drain
current with poor accuracy.

Table 2.1.: First-order MOSFET model summary
“ON”

𝑉𝐺𝑆 ≥ 𝑉𝑇 𝑛

“OFF”
𝑉𝐺𝑆 < 𝑉𝑇 𝑛

𝑉𝐷𝑆 < 𝑉𝐷𝑆𝑎𝑡 𝐼𝐷 = 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛 − 𝑉𝐷𝑆

2 )𝑉𝐷𝑆 𝐼𝐷 = 0
𝑉𝐷𝑆 ≥ 𝑉𝐷𝑆𝑎𝑡 𝐼𝐷 = 1

2𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2 𝐼𝐷 = 0

Despite these shortcomings, the first-order MOSFET model possesses many of the critical features
needed to study the fundamentals of analog circuit design. Many of the second-order effects not
featured in the basic model can be treated using advanced device physics and often result in a
high-complexity model that is unsuitable for hand-calculations and intuition building.

Within the range of circuits treated in this mod ule, we typically begin by applying the first-
order model. Then, only when the circuit appears to be sensitive to second-order dependencies not
covered by this model, we will look for extensions. A treatment in this fashion has the advantage
that the reader can develop a feel for where and when modeling extensions and parameter accuracy
are critical.

In general, the tradeoff between modeling accuracy and complexity is a recurring theme at all
levels of analog circuit design; the issue is not limited to the introductory material covered in this
module. More accurate models can always be generated at the expense of complexity and time.
An experienced analog designer will often use the simplest possible model that will predict the
behavior of his or her circuit with sufficient (but not perfect) accuracy. This also implies that
analog circuit designers must always be on the lookout for model inadequacies. We will encounter
and discuss situations where either model expansions or critical insight on modeling accuracy are
needed throughout this module.

2.1.2. P-Channel MOSFET

The n-channel MOSFET discussed so far conducts current through an electron inversion layer in
a p-type bulk. Similarly, we can construct a p-channel device that operates based on forming an
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

inversion layer of holes in an n-type bulk. The structure of such a MOSFET, which consists of 𝑝+
source and drain regions in an n-type bulk, is shown in Figure 2.6. In many process technologies,
the n-type bulk region is formed by creating an n-type well (n-well) in the p-type substrate that
is used to form n-channels. Such a technology is called an n-well technology. In general, a
technology that offers both n- and p-channel devices is called CMOS technology, where CMOS
stands for Complementary Metal-Oxide-Semiconductor.

Figure 2.6.: (a) Cross-section of a p-channel MOSFET. (b) Schematic symbol.)

The drain current equations for a p-channel MOSFET can be derived using exactly the same
approach as used for the n-channel device since the basic physics are the same. For a p-channel
device, the gate must be made negative with respect to the p-type source in order to form an
inversion layer of holes; the threshold voltage 𝑉𝑇 𝑝 is therefore typically negative. Since holes drift
across the channel from the source to the drain in the p-channel MOSFET, the drain voltage
must be negative with respect to the source, and the drain current (defined as flowing into the
drain terminal) is negative. Therefore, in the on-state of the transistor, 𝑉𝐺𝑆 and 𝑉𝐷𝑆 are negative
quantities, and the source lies at the highest potential among the four terminals. The drain current
for a p-channel in saturation, i.e., 𝑉𝐺𝑆 < 𝑉𝐷𝑆 and 𝑉𝐷𝑆 � 𝑉𝐺𝑆 – 𝑉𝑇 𝑝, is given by

𝐼𝐷 = −1
2𝜇𝑝𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑝)2 (2.10)

A practical problem for the circuit designer is to keep track of the minus signs and negative quan-
tities in the p-channel equations. A solution to this issue is to “think positive,” and work with
the physically intuitive positive quantities 𝑉𝑆𝐺 (instead of 𝑉𝐺𝑆), 𝑉𝑆𝐷 (instead of 𝑉𝐷𝑆) in all hand
calculations. Following this approach, we can rewrite Equation 2.10 as

−𝐼𝐷 = 1
2𝜇𝑝𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑝)2 (2.11)

Note that the right-hand side of this equation yields a positive number. The minus sign included
on the left-hand side remains necessary because 𝐼𝐷, as defined in Figure 2.6(b), is a negative
quantity.
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2.1.3. Standard Technology Parameters

For use throughout this module, it is convenient to define standard MOSFET parameter values as
given in Table 2.2. The chosen values are representative of a CMOS technology with a minimum
channel length, or feature size of 1 𝜇m. As we learn more about the behavior of MOSFETs in
later sections, this list of parameters will grow and we will augment it as needed.

In the context of defining these parameters, it is important to make a clear distinction between
technology parameters and design parameters. Technology parameters are typically fixed in
the sense that a circuit designer cannot alter their values. For instance, the mobility in a MOSFET
depends on how the transistor is made, and the underlying recipe remains unchanged and will
be reused for an extended time to manufacture a large variety and quantity of integrated circuits.
In most modern CMOS technologies, the width and length of a MOSFET remain as the only
parameters that the circuit designer can choose (within appropriate limits) to alter the device’s
electrical behavior.

In determining the transistor geometries, the designer will usually work with electrical variables
and parameters that describe the circuit and its functionality, for example in terms of currents and
voltages. From these electrical descriptions and specifications, the widths and lengths of the transis-
tors are then calculated, and sometimes adjusted via an iterative process. In this task, intermediate
electrical parameters, as for instance the gate overdrive of a MOSFET, are also legitimately viewed
as parameters that are under the control of the circuit designer.

Example 2-1: P-Channel Drain Current Caculation

A p-channel transistor is operated with the following terminal voltages relative to ground: 𝑉𝐺 =
2.5 𝑉 , 𝑉𝑆 = 𝑉𝐵 = 5 𝑉 , 𝑉𝐷 = 1 𝑉 . Calculate the drain current 𝐼𝐷 using the standard technology
parameters given in Table 2.2 and assuming 𝑊/𝐿 = 5.

SOLUTION

From the given terminal voltages, we find 𝑉𝑆𝐺 = 5 𝑉 – 2.5 𝑉 = 2.5 𝑉 and 𝑉𝑆𝐷 = 5 𝑉 – 1 𝑉 = 4
𝑉 . Since 𝑉𝑆𝐺 > 𝑉𝑇 𝑝, the transistor is on, and since 𝑉𝑆𝐷 > 𝑉𝑆𝐺 + 𝑉𝑇 𝑝 = 2.5 𝑉 – 0.5 𝑉 = 2 𝑉 , it
operates in saturation. Therefore, using Equation 2.11 we find

−𝐼𝐷 = 1
2𝜇𝑝𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑝)2

−𝐼𝐷 = 1
2 ⋅ 25𝜇𝐴

𝑉 2 ⋅ 5 ⋅ (2.5𝑉 − 0.5𝑉 )2 = 250𝜇𝐴

−𝐼𝐷 = −250𝜇𝐴

Table 2.2.: Standard technology parameters for the first-order MOSFET model
Parameter n-channel MOSFET p-channel MOSFET
Threshold voltage 𝑉𝑇 𝑛 = 0.5V 𝑉𝑇 𝑝 = -0.5V
Transconductance parameter 𝜇𝑛𝐶𝑜𝑥 = 50𝜇𝐴/𝑉 2 𝜇𝑝𝐶𝑜𝑥 = 25𝜇𝐴/𝑉 2
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

2.2. Building a Common-Source Voltage Amplifier

We will now utilize our first-order understanding of MOSFETs to construct a basic voltage amplifier.
We begin by noting that the drain current in all regions of operation can be controlled by varying
the gate-source voltage. One way to utilize this effect to build a voltage amplifier is to apply the
input such that it controls 𝑉𝐺𝑆. An output voltage can then be generated by letting the drain
current flow through a resistor, as shown in Figure 2.7(a). The top terminal of the resistor is
connected to a supply voltage, 𝑉𝐷𝐷. In this scheme, a larger 𝑉𝐼𝑁 causes the drain current to
increase and 𝑉𝑂𝑈𝑇 to decrease, since a larger 𝑉𝐼𝑁 makes the transistor a “better conductor” (more
inversion charge), which forces the voltage at the output port closer to ground. This type of circuit
is therefore categorized as an inverting amplifier. Furthermore, this transistor stage is called a
common-source amplifier, since the source terminal of the MOSFET is common to the input
and output ports of the circuit.

Figure 2.7.: (a) Basic common-source amplifier schematic. (b) Voltage transfer characteristic for
𝑉𝐷𝐷 = 5 𝑉 , 𝑅𝐷 = 5 𝑘Ω, and 𝑊/𝐿 = 20.

2.2.1. Voltage Transfer Characteristic

In order to derive the voltage transfer characteristic of the circuit (𝑉𝑂𝑈𝑇 as a function of 𝑉𝐼𝑁) we
begin by applying Kirchhoff’s laws at the output node. This yields

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝐼𝐷𝑅𝐷 (2.12)

The drain current ID in this expression depends on 𝑉𝐺𝑆 and 𝑉𝐷𝑆 of the transistor, as described in
Table 2.1. Given the structure of the circuit in Figure 2.7(a), we note that 𝑉𝐺𝑆 = 𝑉𝐼𝑁 and 𝑉𝐷𝑆
= 𝑉𝑂𝑈𝑇 . Using this information, we can construct a piecewise function that relates the input and
output voltages of the circuit. For this derivation, imagine that we sweep 𝑉𝐼𝑁 from 0 𝑉 to the
supply voltage, 𝑉𝐷𝐷.
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2.2. Building a Common-Source Voltage Amplifier

First, we note that for 𝑉𝐼𝑁 = 𝑉𝐺𝑆 < 𝑉𝑇 𝑛, no current flows in the transistor; this implies 𝑉𝑂𝑈𝑇
= 𝑉𝐷𝐷. This behavior is shown in Figure 2.7(b) as a horizontal line for the input voltage range 0 �
𝑉𝐼𝑁 < 𝑉𝑇 𝑛, between points A and the vertical line at 𝑉𝑇 𝑛. As 𝑉𝐼𝑁 increases to values greater than
or equal to 𝑉𝑇 𝑛, the transistor conducts current, and 𝑉𝑂𝑈𝑇 must be less than 𝑉𝐷𝐷. In order to
calculate how 𝑉𝑂𝑈𝑇 changes as a function of 𝑉𝐼𝑁 , we must first determine the transistor’s region
of operation. As we increase 𝑉𝐼𝑁 above 𝑉𝑇 𝑛, does the MOSFET operate in saturation or in the
triode region?

To answer this question, we must determine if 𝑉𝐷𝑆 is smaller or larger than 𝑉𝐺𝑆 - 𝑉𝑇 𝑛. For
𝑉𝐼𝑁 just above 𝑉𝑇 𝑛, 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 is smaller than 𝑉𝐷𝑆, which is still close to 𝑉𝐷𝐷 at the onset of
current conduction. Therefore, the device must initially operate in saturation as we transition from
the “OFF” state of the transistor into the region where 𝐼𝐷 > 0. Under this condition, the output
voltage is given by

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛)2 (2.13)

and the voltage transfer characteristic shows a drop that is quadratic in 𝑉𝐼𝑁 as seen in Fig-
ure 2.7(b).

As we continue to increase 𝑉𝐼𝑁 , 𝑉𝐺𝑆 - 𝑉𝑇 𝑛 also increases while 𝑉𝑂𝑈𝑇 continues to decrease. At
a sufficiently large 𝑉𝐼𝑁 , 𝑉𝐷𝑆 can approach 𝑉𝐺𝑆 - 𝑉𝑇 𝑛 and the condition for current saturation may
no longer hold; the device then transitions into the triode region. The input voltage at which this
transition occurs (point 𝐶 in Figure 2.7(b)) can be computed by setting the right-hand side of
Equation 2.13 equal to 𝑉𝐼𝑁 – 𝑉𝑇 𝑛, and solving for 𝑉𝐼𝑁 . It is interesting to note that graphically,
point 𝐶 can be found through the intersection of the voltage transfer characteristic with the line
𝑉𝐼𝑁 – 𝑉𝑇 𝑛. The intersect corresponds to the point where 𝑉𝑂𝑈𝑇 = 𝑉𝐷𝑆 = 𝑉𝐼𝑁 – 𝑉𝑇 𝑛 = 𝑉𝐺𝑆 - 𝑉𝑇 𝑛,
i.e., the transition point between saturation and triode for the MOSFET.

For the region where the MOSFET operates in the triode region, we have

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛 − 𝑉𝑂𝑈𝑇

2 )𝑉𝑂𝑈𝑇 (2.14)

Unfortunately, solving this expression for 𝑉𝑂𝑈𝑇 yields an unwieldy square-root expression that is
best analyzed graphically. As we can see from the plot in Figure 2.7(b), the most important feature
here is that the slope of the voltage transfer characteristic diminishes for large 𝑉𝐼𝑁 ; i.e., the slope
of the curve at point 𝐷 is smaller than the slope at point 𝐶. Qualitatively, this can be explained
by viewing the MOSFET as a resistor, whose value continues to decrease with 𝑉𝐼𝑁 . For very large
𝑉𝐼𝑁 , the output voltage must asymptotically approach 0 V. This can be shown by approximating
the MOSFET by its on-resistance for small 𝑉𝐷𝑆 as given by Equation 2.9. The output voltage in
the vicinity of point 𝐷 can then be expressed by considering the resistive voltage divider formed
by 𝑅𝐷 and 𝑅𝑜𝑛.

𝑉𝑂𝑈𝑇 ≅ 𝑉𝐷𝐷 ⋅ 𝑅𝑜𝑛
𝑅𝐷 + 𝑅𝑜𝑛

= 𝑉𝐷𝐷
1 + 𝑅𝐷 ⋅ 𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛) (2.15)

This result confirms that for large input voltages, 𝑉𝑂𝑈𝑇 will asymptotically approach zero.

Example 2-2: Voltage Transfer Calculations for a Common-Source Amplifier
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Consider the circuit of Figure 2.7(a) with the following parameters: 𝑉𝐷𝐷 = 5 𝑉 , 𝑅𝐷 = 10 𝑘Ω.

a. Using the standard technology parameters of Table 2.2, calculate the required aspect ratio
𝑊/𝐿 such that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 for 𝑉𝐼𝑁 = 1 𝑉 .

b. Assuming 𝑊/𝐿 =10, calculate the input voltage 𝑉𝐼𝑁 that yields 𝑉𝑂𝑈𝑇 = 2.5 𝑉 .

SOLUTION

a. As a first step, we can calculate the drain current that results in 𝑉𝑂𝑈𝑇 = 2.5 𝑉 using Equa-
tion 2.12.

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝐼𝐷𝑅𝐷

2.5𝑉 = 5𝑉 − (𝐼𝐷 ⋅ 10𝑘Ω)
𝐼𝐷 = 250𝐴

Since 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 = 0.5 V < 𝑉𝐷𝑆 = 2.5 V, we know that the device must operate in the saturation
region. Therefore,

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2

250𝐴 = 1
2 ⋅ 50 𝐴

𝑉 2 ⋅ 𝑊
𝐿 ⋅ (1𝑉 − 0.5𝑉 )2

and solving for the aspect ratio yields 𝑊/𝐿 = 40. Note that this answer can also be found by
direct evaluation of Equation 2.13, without computing 𝐼𝐷 initially.

b. since 𝑉𝐼𝑁 is unknown in this part of the problem, we cannot immediately determine the
operating region of the MOSFET. In such a situation, it is necessary to guess the operating
region, and later test whether the guess was correct. Let us begin by assuming that the device
operates in saturation. We can then write

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2

250𝐴 = 1
2 ⋅ 50 𝐴

𝑉 2 ⋅ 10 ⋅ (𝑉𝐺𝑆 − 0.5𝑉 )2

The two solutions to this equation are 𝑉𝐺𝑆1 = 1.5 𝑉 , and 𝑉𝐺𝑆2 = –0.5 𝑉 . Since we know that the
device is off for 𝑉𝐺𝑆 < 𝑉𝑇 𝑛, it is clear that 𝑉𝐺𝑆2 is a non-physical solution that must be discarded.
For the obtained 𝑉𝐺𝑆1, we must now verify that the device operates in saturation, as initially
assumed. It is straightforward to see that this is indeed the case since 𝑉𝐺𝑆1 – 𝑉𝑇 𝑛 = 1 𝑉 < 𝑉𝐷𝑆 =
2.5 𝑉 . Therefore, the final answer to this problem is 𝑉𝐼𝑁 = 1.5 V.

If we had initially guessed that the device operates in the triode region, we would write

𝐼𝐷 = 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛 − 𝑉𝐷𝑆

2 )𝑉𝐷𝑆

250𝐴 = 50 𝐴
𝑉 2 ⋅ 10 ⋅ (𝑉𝐺𝑆 − 0.5𝑉 − 2.5𝑉

2 ) ⋅ 2.5𝑉
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• The two solution to this equation is 𝑉𝐺𝑆 = 1.95 𝑉 . Since 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 = 1.45 𝑉 < 𝑉𝐷𝑆 = 2.5,
we see that the obtained result contradicts the assumed operation in triode. Therefore, the
next logical step would be to evaluate the saturation equation, as already done above.

2.2.2. Load Line Analysis

A generally useful tool for graphical analysis in electronic circuits is the so-called load line analysis.
The basis for such an analysis in the context of our circuit is the fact that the current flowing
through the transistor (𝐼𝐷) is equal to the current flowing through the resistor (which is viewed
in this context as the load of the circuit). Therefore, if we draw the I-V characteristics of the
MOSFET and 𝑅𝐷 in one diagram, valid output voltages lie at the intersection of the two curves
(equal current). This is further illustrated in Figure 2.8. The load line equation in this plot follows
from solving Equation 2.12 for 𝐼𝐷 and is given by

𝐼𝐷 = 𝑉𝐷𝐷 − 𝑉𝑂𝑈𝑇
𝑅𝐷

(2.16)

Figure 2.8.: Load line plot for the CS amplifier in Figure 2.7(a). Parameters: 𝑉𝐷𝐷 = 5 V, 𝑅𝐷 = 5
kΩ, and 𝑊/𝐿 = 20.

The points A, B, C, and D marked in Figure 2.8 correspond to the points shown with the same
annotation in Figure 2.7(b). Since the transistor drain characteristics are overlaid in Figure 2.8,
it is easy to identify the operating regions that correspond to each point. For example, we can
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immediately see that point B lies in saturation, since the intersect occurs in a region of constant
drain current.

Example 2-3: Output Voltage Calculations for a Common-Source Voltage Amplifier

Construct a load line plot to verify the solution of Example 2-2(b) using 𝑉𝐷𝐷 = 5 𝑉 , 𝑅𝐷 = 10 kΩ
, and W/L =10. Use 𝑉𝐼𝑁 = 𝑉𝐺𝑆 = 1 𝑉 , 1.5 𝑉 , and 2 𝑉 for the drain characteristic plot.

SOLUTION

The solution is shown in Figure 2.9. The load line is most easily drawn by connecting the points (0,
𝑉𝐷𝐷/𝑅𝐷 = 0.5 𝑚𝐴) and (𝑉𝐷𝐷 = 5 𝑉 , 0). The drain characteristics are drawn for the three given
𝑉𝐺𝑆 using the expressions of Table 2.1, by sweeping 𝑉𝐷𝑆 = 𝑉𝑂𝑈𝑇 from 0 𝑉 to 5 𝑉 . The intersect
of the load line with the drain characteristic for 𝑉𝐼𝑁 = 1.5 𝑉 confirms the result already obtained
in Example 2-2(b).

2.2.3. Biasing

After deriving the voltage transfer characteristic of our amplifier, we are now in a position to
evaluate this circuit from an application standpoint. As we have discussed in Chapter 1, a common
objective for a voltage amplifier is to create large output voltage excursions from small changes in
the applied input voltage. With this objective in mind, it becomes clear that only a limited range
of the transfer characteristic in Figure 2.7(b) is useful for amplification. For example, a change in
the input voltage applied around point D in Figure 2.7(b) yields almost no change in the output
voltage. In order to amplify small changes in 𝑉𝐼𝑁 into large changes in 𝑉𝑂𝑈𝑇 , the transistor should
be operated in the saturation region, i.e., in the vicinity of point B. The general concept of operating
a circuit and its constituent transistor(s) around a useful operating point is called biasing.

Biasing generally necessitates the introduction of auxiliary voltages and/or currents that bring
the circuit into the desired state. For the circuit considered in this section, proper biasing can
be achieved by decomposing the input voltage into a constant component, and a component that
represents the incremental voltage change to be amplified; this is illustrated in Figure 2.10(a).
The incremental voltage component 𝑣𝑖𝑛 could represent, for instance, the signal generated by a
microphone or a similar transducer. The voltage 𝑉𝐼𝑁 is a constant voltage that defines the point
on the overall transfer characteristic around which the incremental 𝑣𝑖𝑛 is applied. We call 𝑉𝐼𝑁 the
input bias voltage of the circuit.

Per IEEE convention, the total quantity in such a decomposition is denoted using a lowercase
symbol and uppercase subscript, i.e., 𝑣𝐼𝑁 = 𝑉𝐼𝑁 + 𝑣𝑖𝑛 in our example. Similarly, the drain current
is decomposed as 𝑖𝑑 = 𝐼𝐷 + 𝑖𝑑, where 𝐼𝐷 is the current at the operating point, and id captures the
current deviations due to the applied signal.

Figure 2.10(b) elucidates this setup further using the circuit’s transfer characteristic. With 𝑣𝑖𝑛 =
0, the output is equal to 𝑉𝑂𝑈𝑇 , which is called the bias point or operating point of the output node.
The bias point is sometimes also called the quiescent point (Q), since the corresponding voltage
level corresponds to that of a “quiet” input. Note that 𝑉𝑂𝑈𝑇 can be calculated by evaluating
Equation 2.13, as done previously.

With some nonzero 𝑣𝑖𝑛 applied, the output will now see an excursion away from the bias point. For
example, applying a positive 𝑣𝑖𝑛 will result in a negative incremental change 𝑣𝑜𝑢𝑡 at the output.
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Figure 2.9.
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Figure 2.10.: (a) CS amplifier with input bias.(b) Transfer characteristic showing the bias point.

How can we compute 𝑣𝑜𝑢𝑡 for a given 𝑣𝑖𝑛? Since Equation 2.13 must hold for the total quantities
𝑣𝐼𝑁 = 𝑉𝐼𝑁 + 𝑣𝑖𝑛 and 𝑣𝑂𝑈𝑇 = 𝑉𝑂𝑈𝑇 + 𝑣𝑜𝑢𝑡 we can write

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑣𝐼𝑁 − 𝑉𝑇 𝑛)2 (2.17)

or

𝑉𝑂𝑈𝑇 + 𝑣𝑜𝑢𝑡 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 + 𝑣𝑖𝑛 − 𝑉𝑇 𝑛)2 (2.18)

In order to simplify this expression, and since we are only interested in the change of 𝑣𝑜𝑢𝑡 as a
function of 𝑣𝑖𝑛, it is useful to eliminate the constant term from this expression, given by

𝑉𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛)2 (2.19)

After subtracting Equation 2.19 from Equation 2.18 and rearranging the terms, we obtain

𝑣𝑜𝑢𝑡 = −𝑅𝐷𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛) ⋅ 𝑣𝑖𝑛[1 + 𝑣𝑖𝑛

2(𝑉𝐼𝑁 − 𝑉𝑇 𝑁) ] (2.20)

Using the drain current expression of Equation 2.7, and by defining

𝑉𝑂𝑉 = (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)|𝑄 = 𝑉𝐼𝑁 − 𝑉𝑇 𝑛 (2.21)

the result can be further simplified and rewritten as
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𝑣𝑜𝑢𝑡 = − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 𝑅𝐷 ⋅ 𝑣𝑖𝑛(1 + 𝑣𝑖𝑛
2𝑉𝑂𝑉

) (2.22)

where 𝐼𝐷 is the transistor’s drain current at the bias point, and 𝑉𝑂𝑉 is introduced as a symbol for
the quiescent point gate overdrive voltage.

From the end result in Equation 2.22, we see that 𝑣𝑜𝑢𝑡 is a nonlinear function of 𝑣𝑖𝑛. This is not
surprising, since we are employing a transistor that exhibits a nonlinear I-V characteristic. While
this derivation was relatively simple, the analysis of nonlinear circuits in general tends to be complex.
Picture a circuit that contains several transistors, as for instance a cascade connection of several
stages of the amplifier circuit considered here. Even with only a few nonlinear elements, most cases
involving practical circuits with just moderate complexity tends to yield unwieldy expressions. A
widely used solution to this problem is to approximate the circuit behavior using a linear model
around its operating point, which we will discuss next.

2.2.4. The Small-Signal Approximation

Equation 2.22 is written in a format that suggests an opportunity for simplification. Provided that
𝑣𝑖𝑛 ≪ 𝑣𝑂𝑉 , the bracketed term is close to unity and we can write

𝑣𝑜𝑢𝑡 = − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 𝑅𝐷 ⋅ 𝑣𝑖𝑛 = 𝐴𝑣 ⋅ 𝑣𝑖𝑛 (2.23)

where 𝐴𝑣 is a constant voltage gain term that relates the incremental input and output voltages.

Interestingly, the term Av can also be found using basic calculus. Assuming that the incremental
voltages represent infinitesimally small deviations in the total signal, we can rewrite Equation 2.23
as

𝑑𝑣𝑂𝑈𝑇 = 𝐴𝑣 ⋅ 𝑑𝑣𝐼𝑁 (2.24)

and therefore

𝐴𝑣 = 𝑑𝑣𝑂𝑈𝑇
𝑑𝑣𝐼𝑁

∣
𝑄

= 𝑑𝑣𝑂𝑈𝑇
𝑑𝑣𝐼𝑁

∣
𝑣𝐼𝑁=𝑣𝐼𝑁

(2.25)

where the derivative is evaluated at the circuit’s operating point 𝑄 that is fully defined by choice
of the input bias voltage 𝑉𝐼𝑁 . By applying Equation 2.25 to Equation 2.17, we find

𝐴𝑣 = 𝑑
𝑑𝑣𝐼𝑁

[𝑉𝐷𝐷 − 𝑅𝐷 − 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑣𝐼𝑁 − 𝑉𝑇 𝑛)2] ∣

𝑣𝐼𝑁=𝑣𝐼𝑁

= −𝑅𝐷𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑣𝐼𝑁 − 𝑉𝑇 𝑛)∣

𝑣𝐼𝑁=𝑣𝐼𝑁

(2.26)

= −𝑅𝐷𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛) = −𝑅𝐷𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 𝑉𝑂𝑉
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Finally, using Equation 2.7, we find

𝐴𝑣 = − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 𝑅𝐷 (2.27)

which is the same result obtained previously. The voltage gain 𝐴𝑣 can be interpreted graphically
as shown in Figure 2.11. From Equation 2.25 and basic calculus we know that 𝐴𝑣 is the slope of
the tangent to the transfer characteristic at the point (𝑉𝐼𝑁 , 𝑉𝑂𝑈𝑇 ), which is the operating point of
the circuit.

Figure 2.11.: Concept of small-signal voltage gain. In the small signal model, the input and output
voltages are linearly related through 𝐴𝑣, the slope of the tangent at the operating
point of the large-signal transfer characteristic.

In analog circuit nomenclature, 𝐴𝑣 is called the small-signal voltage gain of the circuit;
this emphasizes that this quantity is only suitable for calculations with “small” signals such that
nonlinear effects are negligible. In the particular circuit considered here, “small” means 𝑣𝑖𝑛 ≪ 𝑉𝑂𝑉 ,
as seen from our analysis. The general concept of approximating circuit behavior by assuming small-
signal excursions around an operating point is called small-signal approximation. In order to
clearly distinguish a circuit transfer characteristic obtained through such an approximation from
one that incorporates the nonlinear transistor behavior (e.g., Equation 2.17), the term large-signal
transfer characteristic is typically used for the latter.

As we shall see in the remainder of this module, working with small-signal approximations greatly
simplifies analog circuit analysis and design. The price paid for the approximation, however, is that
the resulting equations by themselves cannot be used to reason about the circuit’s behavior for large
signals, as for instance signals where 𝑣𝑖𝑛 is comparable to, or even greater than, 𝑉𝑂𝑉 . As illustrated
in Figure 2.11, the small-signal approximation essentially creates a new coordinate system that
linearly relates the input and output voltages. In this model, the output voltage follows the input
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linearly, no matter how large the applied voltage is. In reality, considering the circuit’s large signal
transfer characteristic, signal clipping and strong waveform distortion can occur for large excursions
and poorly chosen bias points. Examples of such cases are illustrated in Figure 2.12.

Figure 2.12.: Examples of signal clipping and distortion. (a) Output waveform is clipped due to
supply voltage limit. (b) Output waveform drives the MOSFET into the triode region.

Example 2-4 : Signal clipping

Consider the circuit of Figure 2.10, using the parameters from Example 2-2(b): 𝑉𝐷𝐷 = 5 𝑉 , 𝑅𝐷 =
10 𝑘Ω, W/L = 10, and 𝑉𝐼𝑁 is adjusted to 1.5 V, so that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 at the circuit’s operating
point. Calculate the most negative excursion that the incremental input voltage 𝑣𝑖𝑛 can assume
before the output is “clipped” to 𝑉𝐷𝐷 (as in Figure 2.12(a)).

SOILUTION

The circuit’s output voltage is given by

𝑣𝑂𝑈𝑇 = 𝑉𝐷𝐷 − 𝑅𝐷 ⋅ 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 + 𝑣𝑖𝑛 − 𝑉𝑇 𝑛)2

Clipping 𝑣𝑂𝑈𝑇 to the supply voltage implies 𝑣𝑂𝑈𝑇 = 𝑉𝐷𝐷. This requires

0 = 𝑉𝐼𝑁 + 𝑣𝑖𝑛 − 𝑉𝑇 𝑛

𝑣𝑖𝑛 = −(𝑉𝐼𝑁 − 𝑉𝑇 𝑛) = −(𝑉𝑂𝑉 )

𝑣𝑖𝑛 = −(1.5𝑉 − 0.5𝑉 ) = −1𝑉

59
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In words, applying a negative signal (𝑣𝑖𝑛) at the input of magnitude larger than 1 V will cause the
output to reach the supply voltage. Making 𝑣𝑖 more negative will create a “plateau” in the output
waveform as shown in Figure 2.12(a).

In a majority of analog circuits, it is sufficient to use the large-signal characteristic for bias-point
and signal-range calculations. For all other purposes, as for instance voltage gain calculations, it is
usually appropriate and justifiable to work with small-signal approximations. Without this clever
split in the analysis, most analog circuits of only moderate complexity would not be amenable to
hand analysis, simply because the nonlinear nature of the transistors would create prohibitively
complex systems of non- linear equations.

Circuits that are designed to amplify small signals from a transducer are classical examples where
the small-signal approximation works. Consider, for instance, the above-discussed amplifier circuit
fed with an input signal from a radio antenna, which is often on the order of several hundred
microvolts. As long as 𝑉𝑂𝑉 is chosen larger than several hundred millivolts, the small signal
approximation will hold with reasonable accuracy. Other examples (not covered in this module)
include amplifiers that rely on electronic feedback, which tends to minimize the signal excursions
around a circuit’s bias point (see Reference 2).

As a final remark, it should be noted that even if the input to a circuit is “small,” the output will
always show at least some amount of nonlinear distortion. In our basic amplifier, this distortion is
caused by the bracketed term in Equation 2.22. In cases where even weak distortion is an issue, the
designer often employs computer simulation tools to study the relevant behavior. From a design
perspective, deviations from linearity can be minimized if needed. For the discussed common-source
amplifier, this is seen from Equation 2.22: decreasing the ratio 𝑣𝑖𝑛 / 𝑉𝑂𝑉 , either by reducing 𝑣𝑖𝑛
or by increasing 𝑉𝑂𝑉 will result in improved linearity.

The exact analysis ofThe exact analysis of nonlinear distortion is beyond the scope of this
module, and is typically treated only in advanced integrated circuit texts, as for instance Reference
3. We will focus here primarily on studying the relevant behavior of analog circuits using a linear
small-signal abstraction, aided by basic bias-point and signal-range calculations.

2.2.5. Transconductance

The method of differentiating a circuit’s large-signal transfer characteristic to obtain a small-signal
approximation was straightforward for the simple one-transistor circuit discussed so far. Unfortu-
nately, for a larger circuit it is usually much more difficult and often tedious to derive a complete
transfer characteristic in the form of Equation 2.17.

A clever workaround that is predominantly used in analog circuit analysis is based on lineariz-
ing the circuit element-by-element around the operating point. This method is applied in three
steps: (1) Compute all node voltages and branch currents at the operating point using the devices’
large-signal model. (2) Substitute linear models for all nonlinear components and compute their
parameters using the operating point information. (3) Compute the desired transfer function using
the linear model obtained in step 2.

The biggest advantage of this method, called small-signal analysis, is that it avoids computing
the large-signal transfer characteristic of the circuit, and instead defers the transfer function analysis
until all elements have been approximated by linear models. The linearized models of nonlinear
elements, such as MOSFETs, are typically called small-signal models.
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2.2. Building a Common-Source Voltage Amplifier

Figure 2.13.: (a) Large-signal transfer characteristic of an n-channel MOSFET in the saturation
region. (b) Small-signal transconductance (𝑔𝑚) at the operating point.
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We will now illustrate the small-signal analysis approach by applying it to the basic common-source
amplifier example covered so far in this chapter. Consider first the MOSFET device in Figure 2.7(a).
In general, once the operating point of the transistor is known, the small-signal model is obtained
by differentiating the large signal I-V relationships at this point. This is further illustrated in
Figure 2.13, assuming that the MOSFET is biased in the saturation region. The proportionality
factor that links the incremental drain current (𝑖𝑑) and the gate-source voltage (𝑣𝑔𝑠) is given by
the slope of the tangent to the large signal transfer characteristic at the bias point. This quantity
is called transconductance, or 𝑔𝑚. Mathematically, we can write

𝑔𝑚 = 𝑖𝑑
𝑣𝑔𝑠

= 𝑑𝑖𝐷
𝑑𝑣𝐺𝑆

∣
𝑣𝐺𝑆=𝑉𝐺𝑆

(2.28)

In order to find the transconductance for the saturation region of the device, we evaluate Equa-
tion 2.28 using Equation 2.7. This yields

𝑔𝑚 = 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛) = 𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 𝑉𝑂𝑉 (2.29)

Alternative forms of this expression are obtained by eliminating 𝑉𝑂𝑉 or 𝜇𝑛𝐶𝑜𝑥 W/L using Equa-
tion 2.7, which gives

𝑔𝑚 = √2𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 𝐼𝐷 (2.30)

or

𝑔𝑚 = 2𝐼𝐷
𝑉𝑂𝑉

(2.31)

All of the above equations can be used to calculate 𝑔𝑚; the choice of which equation is used depends
on the given parameters. The physical unit for transconductance is 𝐴/𝑉 = Ω−1, or Siemens (𝑆).
Once the transconductance is determined, we can insert the model of Figure 2.13(b) into the
original circuit (Figure 2.7(a)) for further analysis. The resulting small-signal circuit equivalent
is shown in Figure 2.14. No modeling modification is needed for the resistor 𝑅𝐷, as it is already
assumed in Figure 2.7(a) that it follows a linear 𝐼/𝑉 law (𝑉 = 𝐼 ⋅ 𝑅). However, since the supply
voltage is constant in the large-signal model, it must be replaced with 0 V or ground (𝐺𝑁𝐷) in
the small-signal model. This is because the differentiation of a constant quantity yields zero.

Using the model of Figure 2.14, we now apply Kirchhoff’s laws at the output and find

𝑣𝑜𝑢𝑡 = −𝑔𝑚 ⋅ 𝑣𝑖𝑛 ⋅ 𝑅𝐷 (2.32)

Finally, by substituting Equation 2.31 we obtain

𝑣𝑜𝑢𝑡 = − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 𝑅𝐷 ⋅ 𝑣𝑖𝑛 = 𝐴𝑣 ⋅ 𝑣𝑖𝑛 (2.33)
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Figure 2.14.: Small-signal model of the circuit in Figure 2.7(a).
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As expected, this result is equivalent to what was obtained by applying the small-signal approxima-
tion to Equation 2.22, and also by differentiating Equation 2.17 at the operating point. However,
as indicated previously, the big advantage of working with a small-signal model for individual
transistors is that this simplifies the analysis of larger circuits.

2.2.6. P-Channel Common-Source Voltage Amplifier

As shown in Figure 2.15(a), we can also build a CS amplifier using a p-channel device. Similar to
the n-channel case, we can derive a large-signal transfer characteristic using Equation 2.11 and by
applying 𝐾𝑉 𝐿 at the output node. The resulting plot is shown in Figure 2.15(b). Compared to
the n-channel case (Figure 2.7(b)), one can show that the characteristic is flipped sideways (since
𝑉𝑆𝐺 = 𝑉𝐷𝐷 - 𝑉𝐼𝑁) and upside down (because 𝐼𝐷 is negative for a p-channel transistor). Therefore,
for small 𝑉𝐼𝑁 near 0 𝑉 , the device operates in the triode region and the output voltage is close to
𝑉𝐷𝐷. For 𝑉𝐼𝑁 = 𝑉𝐷𝐷, the device is off and the output is at 0 𝑉 , since 𝑉𝑆𝐺 = 0 and no current
flows in the device.

Figure 2.15.: (a) P-channel common-source amplifier schematic. (b) Voltage transfer characteristic
for 𝑉𝐷𝐷 = 5 V, 𝑅𝐷 = 5 𝑘Ω, and 𝑊/𝐿 = 40.

In terms of its small-signal model, it follows that the p-channel CS amplifier is identical to the
n-channel version. This can be seen intuitively by comparing Figure 2.7(b) and Figure 2.15(b): in
the region around point 𝐵, both transfer characteristics exhibit a negative slope and therefore will
behave alike for small perturbations. We will show this formally in the following discussion.

We begin by inserting a small-signal model for the transistor as shown in Figure 2.16(a). Based on
the positive variable convention of Equation 2.11, we define the transconductance for the p-channel
transistor as
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𝑔𝑚 = 𝑑
𝑑𝑣𝑆𝐺

((−𝑖𝐷))∣
𝑄

= 𝜇𝑝𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝑆𝐺 + 𝑉𝑇 𝑝) (2.34)

= 2(−𝐼𝐷)
𝑉𝑆𝐺 + 𝑉𝑇 𝑝

= 2(−𝐼𝐷)
𝑉𝑂𝑉

Figure 2.16.: Small-signal model of the p-channel common-source amplifier: (a) using the p-channel
model directly, (b) a flipped version of (a), and (c) with sign changes applied to show
equivalence with the n-channel model.

Note that through this expression, we have defined 𝑉𝑂𝑉 for the p-channel case as 𝑉𝑆𝐺 + 𝑉𝑇 𝑝, which
is a positive quantity for a p-channel device in the “ON” state.

Although we could solve for the small-signal voltage gain directly with the circuit shown in
Figure 2.16(a) it is easier to flip the transistor 180° (Figure 2-15(b)) so that the circuit appears
similar to the n-channel version. Since 𝑣𝑠𝑔=–𝑣𝑔𝑠 we can change signs at the input and the dependent
current source and find that the p-channel common-source amplifier small-signal model is identical
to the n-channel version as shown in Figure 2.16(c).

This result applies more generally to all the transistor configurations and model extensions that
we will study in this module. Once the operating point parameters of a p-channel device have been
determined (e.g., a calculation of 𝑔𝑚 using Equation 2.34), it is perfectly valid to replace it with an
n-channel equivalent. This is a very powerful and convenient result, since it allows us to focus on
n-channel only configurations in small-signal analyses, without having to worry about the specific
sign conventions of p-channels.

2.2.7. Modeling Bounds for the Gate Overdrive Voltage

According to Equation 2.31, 𝑔𝑚/𝐼𝐷 = 2/𝑉𝑂𝑉 tends to infinity as the gate overdrive voltage 𝑉𝑂𝑉
approaches zero. This implies that for a transistor that is “barely on,” we can extract very large
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transconductance values for only small bias currents. Unfortunately, this behavior is incorrect, and
stems from limitations of the device model discussed in Section 2-1. As 𝑉𝑂𝑉 approaches zero, a
more complex analysis is needed to predict the drain current and its derivative with respect to gate
voltage see Reference 4.

Figure 2.17 plots the 𝑔𝑚/𝐼𝐷 characteristic of a MOSFET, and the expected behavior based on
Equation 2.31. As we can see, for 𝑉𝑂𝑉 < 150𝑚𝑉 , a large discrepancy exists between a physical
device and the prediction based on the simple square-law model used in this treatment. In order
to avoid unrealistic design outcomes due to this modeling limitation, we define a bound for the
minimum allowed gate overdrive voltage for all circuits covered in this module

𝑉𝑂𝑉 ≥ 𝑉𝑂𝑉 𝑚𝑖𝑛 = 150𝑚𝑉 (2.35)

Designing with a smaller 𝑉𝑂𝑉 would require a more elaborate model for hand calculations, which
is beyond the scope of this module. The interested reader is referred to advanced material on this
topic, available for example in References 4 and 5.

Figure 2.17.: Transconductance to current ratio predicted by Equation 2.31 and the behavior of an
actual MOSFET.

2.2.8. Voltage Gain and Drain Biasing Considerations

In the basic common-source amplifier discussed so far, the drain resistor 𝑅𝐷 serves a dual purpose:
(1) it translates the device’s incremental drain current (𝑖𝑑) into a voltage (𝑉𝑜𝑢𝑡), and (2) it supplies
the quiescent point drain current (𝐼𝐷) for the MOSFET. As we shall show next, this creates an
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2.2. Building a Common-Source Voltage Amplifier

undesired link between the bias point constraints of the circuit and the achievable small-signal
voltage gain of the amplifier. To see this, we rewrite Equation 2.36 as shown below

𝐴𝑣 = − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 𝑅𝐷 = −2 𝑉𝑅
𝑉𝑂𝑉

(2.36)

where 𝑉𝑅 = 𝑉𝐷𝐷–𝑉𝑂𝑈𝑇 is the voltage drop across RD at the operating point. This result leads to
several interesting conclusions. First, note that the voltage gain of the amplifier is fully determined
once 𝑉𝑂𝑉 and voltage drop across 𝑅𝐷 are known. For example, if the circuit is biased such that
𝑉𝑂𝑉 = 0.2 𝑉 and 𝑉𝑅 = 2 𝑉 , we have 𝐴𝑣 = –20; regardless of the particular W, L or 𝜇𝑛 𝐶𝑜𝑥 of the
employed MOSFET. Second, since the possible values for 𝑉𝑂𝑉 are lower-bounded (Equation 2.35)
and 𝑉𝑅 is upper-bounded (finite 𝑉𝐷𝐷), there exists a maximum possible 𝐴𝑣 that can be obtained

|𝐴𝑣𝑚𝑎𝑥| = 2 𝑉𝑅𝑚𝑎𝑥
𝑉𝑂𝑉 𝑚𝑖𝑛

= 2𝑉𝐷𝐷 − 𝑉𝑂𝑉 𝑚𝑖𝑛
𝑉𝑂𝑉 𝑚𝑖𝑛

≅ 2 𝑉𝐷𝐷
𝑉𝑂𝑉 𝑚𝑖𝑛

(2.37)

In this result, it was assumed the transistor is biased at the edge of the triode region, a somewhat
impractical, but appropriate limit case to consider. Evaluating the above expression for 𝑉𝐷𝐷 = 5
V and 𝑉𝑂𝑉 𝑚𝑖𝑛 = 150 𝑚𝑉 yields |𝐴𝑣𝑚𝑎𝑥| � 67. Can we overcome this limit and change our amplifier
such that it can achieve voltage gains beyond this value?

In order to investigate this, consider the load line illustrations shown in Figure 2.18. As explained
in Section 2-2-2, the load line for our circuit is defined by the points (0, 𝑉𝐷𝐷/𝑅𝐷) and (𝑉𝐷𝐷, 0).
From the location of these points, we see that the x-axis intercept of the load line is fixed, while the
y-intercept moves lower with larger values of 𝑅𝐷. This reduces the slope of the load line, resulting
in a larger small-signal voltage gain of the circuit. Furthermore, note that for a fixed quiescent
point drain current 𝐼𝐷, larger 𝑅𝐷 shifts the output bias point 𝑉𝑂𝑈𝑇 to smaller values, i.e., closer
to the edge of the MOSFET’s triode region. This observation captures the result of Equation 2.37
in a graphical way: we cannot increase the small-signal voltage gain beyond a certain limit due the
link between 𝑉𝑂𝑈𝑇 and the chosen 𝑅𝐷.

A more ideal situation is depicted in Figure 2.19. If we could somehow create a load line that
“rotates” about the desired operating point (as a function of 𝑅𝐷), the voltage gain could be set
independently of 𝑉𝑂𝑈𝑇 . A modified drain network that lets us achieve this behavior is shown in
Figure 2.20(a). In this circuit, 𝑅𝐷 is now connected to a voltage 𝑉𝐵 (instead of the supply voltage
𝑉𝐷𝐷) and an ideal current source 𝐼𝐵 is used to provide a fixed current. In a realistic implementation
circuit, 𝐼𝐵 can be built, for example, using a p-channel MOSFET that operates in saturation. For
the time being, we will neglect such implementation details, and postpone the discussion of current
sources to Chapter 5.

With this new configuration, the relationship between 𝑖𝐷 and 𝑣𝑂𝑈𝑇 becomes

𝑖𝐷 = 𝐼𝐵 = 𝑉𝐵 − 𝑣𝑂𝑈𝑇
𝑅𝐷

(2.38)

or
𝑣𝑂𝑈𝑇 = 𝑉𝐵 + (𝐼𝐵 − 𝑖𝐷)𝑅𝐷 (2.39)
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Figure 2.18.: Amplifier load lines for large and small values of 𝑅𝐷.

As we can see from these equations (also graphically shown in Figure 2.20(b)), at the point 𝑣𝑂𝑈𝑇
= 𝑉𝐵, we have 𝑖𝐷 = 𝐼𝐵, regardless of the value of 𝑅𝐷$. Therefore, utilizing this point as the
operating point of our amplifier precisely achieves the goal we have in mind. In particular, we wish
to set 𝐼𝐵 = 𝐼𝐷, the desired quiescent point drain current of the MOSFET, and 𝑉𝐵 = 𝑉𝑂𝑈𝑇 , the
desired output operating point. With this choice, the role of the current source is to provide the
MOSFET’s bias current, while the resistor RD is responsible only for converting the incremental
drain current into an incremental output voltage; no DC bias current flows in this element.

Since the voltage source 𝑉𝐵 and the current source 𝐼𝐵 aid in maintaining the circuit’s bias point,
we generally classify these elements as biasing sources. However, it is important to distinguish
their function from the input bias voltage 𝑉𝐼𝑁 . 𝑉𝐼𝑁 directly sets the quiescent point gate-source
voltage of the transistor and therefore fully defines the operating point on the MOSFET’s I-V
characteristic and the corresponding drain current. In the above-described scenario, 𝐼𝐵 is adjusted
to supply this same drain current, but does not define it. We therefore categorize 𝐼𝐵 an auxiliary
bias current that helps sustain, but does not set the quiescent point of the transistor. Since 𝑉𝐵
defines the quiescent point output voltage of the circuit, we refer to this element as the output
bias voltage.

Lastly, it is important to note that for the modified circuit in Figure 2.20(a), the previously derived
small-signal model shown in Figure 2.14 still applies. This can be understood by differentiating
Equation 2.39 at the operating point to find the small-signal equivalent of the network placed at
the drain of the amplifier
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Figure 2.19.: Desired load line behavior.

Figure 2.20.: (a) CS amplifier with modified drain biasing scheme. (b) Load line characteristic.
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𝑑𝑣𝑜𝑢𝑡
𝑑𝑖𝐷

∣
𝑄

= 𝑑
𝑑𝑖𝐷

(𝑉𝐵 + (𝐼𝐵 − 𝑖𝐷)𝑅𝐷) = −𝑅𝐷 (2.40)

As this result indicates, and as we have seen previously, any constant sources, such as 𝑉𝐵, 𝐼𝐵, etc.,
drop out of the small signal model, which captures only components that affect the incremental
changes in currents and voltages around the circuit’s operating point.

For the circuit in Figure 2.20(a), one might now be tempted to think that we can obtain an
arbitrarily large voltage gain, as long as 𝑅𝐷 is made very large. Unfortunately this is not the case
for several reasons, the first of which stems from physical effects that we have not yet included
in the MOSFET model. This aspect is further discussed in Section 2-3. In addition, there are
practical limitations to the attainable voltage gain, discussed next.

2.2.9. Sensitivity of the Bias Point to Component Mismatch∗

Consider a CS amplifier biased at the gate as done previously with a bias voltage 𝑉𝐼𝑁 , directly
setting up the quiescent point drain current 𝐼𝐷 (depending on 𝑊/𝐿 and other relevant device
parameters). Our goal in using the drain bias network of Figure 2.20(a) is then to set 𝐼𝐵 = 𝐼𝐷
and chose 𝑉 𝐵 such the output is biased at a reasonable, desired 𝑉𝑂𝑈𝑇 . Unfortunately, in practice,
we can never achieve 𝐼𝐵 = 𝐼𝐷 exactly; there will always be a non- zero Δ𝐼 = 𝐼𝐵 – 𝐼𝐷. This case
is shown in Figure 2.21. As illustrated, the finite Δ𝐼 leads to a shift Δ𝑉 away from the desired
output operating point 𝑉𝐵. This shift is proportional to 𝑅𝐷, since the current difference Δ𝐼 flows
into 𝑅𝐷, creating the undesired Δ𝑉 .

Figure 2.21.: Bias point shift due to mismatch in 𝐼𝐵 and 𝐼𝐷.

70



2.2. Building a Common-Source Voltage Amplifier

Example 2-5: Output Bias Voltage Shift due to Current Mismatch

Consider the CS amplifier of Figure 2.20(a), biased at the gate such that 𝑉𝑂𝑉 = 500 mV. Assume
𝐼𝐷 = 200 𝜇𝐴, and that 𝑅𝐷 is chosen such that the amplifier achieves 𝐴𝑣 = –400. Considering
Figure 2.21, how much mismatch between 𝐼𝐵 and 𝐼𝐷 (in ) can be tolerated such that 𝑉𝑂𝑈𝑇 deviates
from the intended bias point (𝑉𝐵) by no more than Δ𝑉 = 500 𝑚𝑉 ? Repeat this calculation for 𝐴𝑣
= –40 and –4.

SOLUTION

We begin by computing the transconductance of the MOSFET

𝑔𝑚 = 2𝐼𝐷
𝑉𝑂𝑉

= 2 ⋅ 200𝜇𝐴
0.5𝑉 = 800𝑆

In order to achieve 𝐴𝑣 = –400, we require 𝑅𝐷 = 400/800 𝜇𝑆 = 500𝑘Ω. Therefore,

∆𝐼
𝐼𝐷

= ∆𝑉
𝐼𝐷𝑅𝐷

< 500𝑚𝑉
200𝜇𝐴 ⋅ 500𝑘Ω = 0.5%

For 𝐴𝑣 = –40 and 𝐴𝑣 = –4, the result modifies to 5%, and 50%, respectively.

As expected, this result confirms that for larger |𝐴𝑣|, the auxiliary bias current 𝐼𝐵 must match
the MOSFETs drain current more accurately. How precisely can we match these two currents?
Unfortunately, answering this question in detail is beyond the scope of this module, and is the
subject of advanced research papers such as Reference 6. Nonetheless, it can be said in general
that matching currents, voltages, or any other electrical quantities in today’s integrated circuits to
better than 1% requires special care and understanding. In some cases, even 10% matching can be
hard to guarantee. With this guideline in mind, it becomes clear that the circuit of Figure 2.20(a)
may become impractical if we aim for too much voltage gain.

The general issue of properly dealing with variability in integrated circuit components is a
complex topic that is still being actively researched. At the introductory level of this module, the
main point that the reader should retain is that any circuit whose bias point relies on precisely
matched components or high absolute accuracy in any electrical parameter may not be robust in the
presence of component variability. In general, experienced circuit designers avoid situations that
resemble the “balancing of a marble on the tip of a cone,” i.e., circuits that will be overly sensitive
to variations in component parameters. We will take up this point once more when discussing
practical biasing circuits in Chapter 5.

As a final note concerning the issue of variability, it is worth mentioning that electronic feedback
can help alleviate problems as the one analyzed in Example 2-5. Picture for example adding an
auxiliary circuit to Figure 2.20(a) that somehow measures VOUT, and adjusts 𝑉𝐼𝑁 (and therefore
𝐼𝐷) until the desired output operating voltage is set. In such schemes, relatively large variations
in 𝐼𝐵 can be absorbed. Feedback circuits are not covered in this module, but are the subject of
advanced texts such as Reference 2.
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2.3. Channel Length Modulation

The MOSFET model used so far assumes that the drain current in the saturation region is inde-
pendent of the drain-source voltage. This behavior corresponds to that of an ideal current source,
which is generally non-physical. A more realistic output characteristic observed in real MOSFETs
is shown in Figure 2.22. For a physical MOSFET, 𝐼𝐷 tends to increase with 𝑉𝐷𝑆; an effect that can
be explained (to first-order) as a voltage dependent modulation of the channel length (see Section
2-3-1).

Figure 2.22.: Realistic n-channel I-V plots, incorporating the dependence of saturation drain current
on 𝑉𝐷𝑆. (solid lines), along with the first-order model assumed previously (dotted
lines). Parameters: W = 20 𝜇𝑚, L = 2 𝜇𝑚.

When inserted into the circuit of Figure 2.20(a), the dependence of drain current on 𝑣𝐷𝑆 (𝑣𝑂𝑈𝑇 ),
will have an impact on the overall transfer characteristic of the amplifier, which we will thus consider
in this section. For simplicity, let us first investigate the case of 𝑅𝐷 –> ∞, i.e., no explicit drain
resistance, and using only an ideal current source in the drain biasing network (see Figure 2.23(a)).
In this case, the load line is horizontal at 𝐼𝐵 = 𝐼𝐷, as shown in Figure 2.23(b). As before, the
operating point 𝑄 is established at the point where the load line and the device’s drain characteristic
for the applied quiescent point input voltage (𝑉𝐼𝑁) meet.

Note that similar to the case considered in the previous section, the output operating point
voltage in this circuit will shift by large amounts for relatively small changes in 𝐼𝐵 (or MOSFET
parameters). This issue must be addressed when this circuit is used in practice, for example by
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Figure 2.23.: (a) Intrinsic voltage gain stage. (b) Load line plot.

providing a feedback mechanism that adjusts 𝐼𝐵 such that the desired 𝑉𝑂𝑈𝑇 is maintained in the
presence of component variations.

Assuming that a well-defined operating point has been established by some means, incremental
changes in 𝑣𝐼𝑁 applied around the bias point 𝑄 will force the intersection of the horizontal load
line with the MOSFET’s drain characteristics to move sideways (since the drain current cannot
change), creating a finite output voltage excursion vout. The magnitude of this voltage excursion,
and thus the voltage gain of the circuit, depends on the slope of the MOSFET’s drain characteristic
in saturation. The voltage gain achieved in this configuration is commonly called the intrinsic
voltage gain of the MOSFET, as it represents the voltage gain of the transistor by itself, without
any added resistances in the drain bias network. By the same reasoning, the circuit of Figure 2.23(a)
is often called the intrinsic voltage gain stage. The voltage gain and other parameters of more
complex amplifier circuits are often directly related to the intrinsic voltage gain of their constituent
transistors, giving this parameter a fundamental significance in circuit design.

2.3.1. The �-Model

Unfortunately, the intrinsic voltage gain of a MOSFET cannot be predicted using the MOSFET
model established so far. We will therefore extend the first-order MOSFET model to incorporate the
dependence of the saturation current on the drain-source voltage. As a first step, we will describe
the effect in terms of large-signal equations. Next, we will apply a small-signal approximation
that makes it possible to capture the 𝐼𝐷𝑠𝑎𝑡–𝑉𝐷𝑆 dependence through a single resistor added to the
MOSFET’s small-signal model.

We begin by revisiting an approximation that was made in Section 2-1. In order to arrive at
the constant drain current expression in saturation (Equation 2.7), it was assumed that Δ𝐿, the
distance from the pinch-off point to the drain, is negligible relative to the channel length L. In
reality, this approximation is fine only as long we do not care about the 𝐼𝐷 − 𝑉𝐷𝑆 dependence seen
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in Figure 2.22. Therefore, in order to get a quantitative handle on the MOSFET’s intrinsic voltage
gain, we must further investigate the impact of the physics at the drain side.

The simplest possible way to proceed is to factor Δ𝐿 into the existing derivation of Section 2-1.
Instead of integrating Equation 2.5 over the length L, we use 𝐿–Δ𝐿 as the upper limit of the
integral. Recall that 𝐿–Δ𝐿 is the actual location where the mobile charge vanishes, i.e., 𝑄𝑛(𝑦) = 0.
With this change we obtain the following expression for the saturation region.

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 − ∆𝐿(𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2 (2.41)

Now, provided that Δ𝐿 is still small (but not negligible) relative to 𝐿, we can apply the following
first-order approximation:

1
𝐿 − ∆𝐿 ≈ 1

𝐿(1 + ∆𝐿
𝐿 ) (2.42)

Next, note that Δ𝐿 must be a function of the drain voltage, since the depletion region widens
with increasing reverse bias. This effect is commonly called channel length modulation. Un-
fortunately, an exact calculation of Δ𝐿 as a function of the terminal voltages involves solving the
two-dimensional Poisson equation and leads to complex expressions. For simplicity, we assume that
the fractional change in channel length is proportional to the drain voltage

∆𝐿
𝐿 = 𝜆𝑛𝑉𝐷𝑆 (2.43)

where 𝜆𝑛 is the channel length modulation parameter. Device measurements and simulations
indicate that 𝜆𝑛 approximately varies with the inverse of the channel length. For the MOSFETs in
this module, we will use

𝜆𝑛 = 0.1𝜇𝑚𝑉 ( − 1)
𝐿 (2.44)

where 𝐿 is in 𝜇𝑛𝑚. Finally, we substitute Equation 2.44 and Equation 2.43 into Equation 2.41 and
find a very useful approximation to the drain current in saturation, often called the 𝜆-model:

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2(1 + 𝜆𝑛𝑉𝐷𝑆) (2.45)

where 𝑉𝐷𝑆 �𝑉𝐷𝑆𝑠𝑎𝑡 = 𝑉𝐺𝑆 − 𝑉𝑇 𝑛. This model has proven useful and sufficiently accurate for basic
hand calculations, even though the physics related to the 𝐼𝐷𝑆𝑠𝑎𝑡-𝑉𝐷𝑆 dependence are in reality much
more complex than discussed above. As long as 𝜆𝑛 is determined from measurements or accurate
physical analysis, the model properly approximates a typical MOSFET’s I-V characteristic to first-
order. Higher-order models are typically not used in hand analysis, but find their use in advanced
computer simulation models.

We now wish to incorporate the channel length modulation effect into the small-signal model of the
MOSFET. An important new feature that must be considered in this task is that the drain current
of Equation 2.45 now depends on two voltages, namely 𝑉𝐷𝑆 and 𝑉𝐺𝑆. A common and appropriate
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way of handling this situation for small-signal modeling is to approximate the incremental drain
current around the operating point as the total differential (as frequently used in error analysis)
due to both variables, i.e.

𝑖𝑑 = 𝜕𝑖𝐷
𝜕𝑉𝐺𝑆

∣
𝑄

⋅ 𝑣𝑔𝑠 + 𝜕𝑖𝐷
𝜕𝑉𝐺𝑆

∣
𝑄

⋅ 𝑣𝑑𝑠 (2.46)

The above expression essentially treats 𝑣𝐷𝑆 as a constant when evaluating the derivative of 𝑖𝐷
with respect to 𝑣𝐺𝑆. Similarly, 𝑣𝐺𝑆 is assumed constant in the differentiation with respect to 𝑣𝐷𝑆.
This use of partial differentiation is justified and reasonably accurate as long as at least one of the
following two conditions is met:

1. The excursion in the variable that is treated as a constant can be approximated as infinitesi-
mally small and therefore negligible.

2. The excursion in the variable that is approximated as a constant is considerable, but nonethe-
less does not affect the derivative with respect to the second variable.

In the context of a common-source amplifier, for instance, the first condition applies to 𝑣𝐺𝑆. Just
as in the derivation of the simple small-signal model without 𝑉𝐷𝑆 dependence, we can argue that
changes in 𝑣𝐺𝑆 are suitably modeled as “small” (relative to 𝑉𝑂𝑉 ). The same condition cannot be
applied to 𝑣𝐷𝑆 in general. Often times the output voltage, and therefore 𝑣𝐷𝑆, see large excursions
in amplifier circuits. In order for Equation 2.46 to be reasonably accurate, we must require the
second condition, i.e., the derivative of 𝑖𝐷 w.r.t. 𝑣𝐺𝑆 must not strongly depend on drain-source
voltage. By inspection of Equation 2.45, we see that this condition is met as long as 𝜆𝑛 is small,
which is typically the case for MOSFETs intended for use in amplifier stages.

To continue with our analysis, we rewrite Equation 2.46 as

𝑖𝑑 = 𝑔𝑚𝑣𝑔𝑠 + 𝑔𝑜𝑣𝑑𝑠 (2.47)

where
𝑔𝑚 = 𝜕𝑖𝐷

𝜕𝑉𝐺𝑆
∣
𝑄

= 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)(1 + 𝜆𝑛𝑉𝐷𝑆) = 2𝐼𝐷

𝑉𝐺𝑆 − 𝑉𝑇 𝑛
= 2𝐼𝐷

𝑉𝑂𝑉
(2.48)

and
𝑔𝑜 = 𝜕𝑖𝐷

𝜕𝑉𝐺𝑆
∣
𝑄

= 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2𝜆𝑛 = 2𝐼𝐷

𝑉𝐺𝑆 − 𝑉𝑇 𝑛
= 2𝐼𝐷

𝑉𝑂𝑉
(2.49)

where the approximate end result assumes 𝜆𝑛𝑉𝐷𝑆 ≪ 1, a condition that is often satisfied for long
channels and moderate 𝑉𝐷𝑆. For instance, assuming L = 2 𝜇m and 𝑉𝐷𝑆 = 2 𝑉 gives 𝜆𝑛𝑉𝐷𝑆 = 0.1
which is much less than one.

In the above expressions, 𝑔𝑚 is the transconductance of the MOSFET (as defined previously)
and go is called the output conductance. The inverse of go is called the output resistance, 𝑟𝑜 = 𝑔−1

𝑜 .
Graphically,the output conductance corresponds to the slope of the transistor’s drain characteristic
at the operating point, which is the derivative of 𝑖𝐷 with respect to 𝑣𝐷𝑆, while keeping the gate-
source voltage constant (see Figure 2.24(a)). In the small-signal model of the MOSFET, the output
conductance can be included as shown in Figure 2.24(b). This representation follows directly
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Figure 2.24.: (a) Graphical interpretation of 𝑔𝑜. (b) MOSFET small-signal model for the saturation
region with output conductance (𝑔𝑜).

from Equation 2.47, which represents Kirchhoff’s Current Law equation for the drain node of the
transistor.

Just as with the simple 𝑔𝑚-only small-signal model of Figure 2.13, the main idea for the usage
of the extended model with go is to use the small-signal equivalent circuit of Figure 2.24(b) in a
larger circuit. We will illustrate this using two examples of interest: the intrinsic voltage gain stage
of Figure 2.23(a) and the common-source amplifier of Figure 2.20(a).

2.3.2. Common-Source Voltage Amplifier Analysis Using the 𝜆-Model

For the intrinsic voltage gain stage, the small-signal model of Figure 2.24(b) corresponds directly to
the small-signal model for the entire circuit with 𝑣𝑖𝑛 = 𝑣𝑔𝑠 and 𝑣𝑜𝑢𝑡 = 𝑣𝑑𝑠. Therefore, the voltage
gain of the intrinsic gain stage is given by

𝐴𝑣 = −𝑔𝑚
𝑔𝑜

= −𝑔𝑚𝑟𝑜 ≅ − 2𝐼𝐷
𝑉𝑂𝑉

⋅ 1
𝜆𝑛𝐼𝐷

= − 2
𝜆𝑛𝑉𝑂𝑉

(2.50)

From this expression, we can see that the voltage gain can be increased by increasing 𝐿, which will
decrease 𝜆. Alternatively, the voltage gain can be increased by reducing 𝑉𝑂𝑉 , which corresponds
to reducing the drain current 𝐼𝐷 for a fixed aspect ration 𝑊/𝐿. In this context, note that for 𝑉𝑂𝑉
→ 0, Equation 2.50 predicts infinite voltage gain. This non-physical outcome stems from the same
issue already discussed in Section 2-2-7: for $V_{OV} → 0, 𝑔𝑚 approaches infinity for a fixed
current in our simplistic square-law I-V model. As argued before, the usable range for 𝑉𝑂𝑉 must
therefore be lower-bounded as specified in Equation 2.35. Assuming 𝑉𝑂𝑉 = 𝑉𝑂𝑉 𝑚𝑖𝑛 = 150 𝑚𝑉
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and L = 1 𝜇𝑚, the intrinsic voltage gain of a MOSFET described by the parameters used in this
module is approximately 2/(0.1·0.15) = 133.

Let us now consider the common-source amplifier of Figure 2.20(a). Including the finite output
conductance from the 𝜆-model, the small-signal model is modified as shown in Figure 2.25 and the
voltage gain expression becomes

𝐴𝑣 = −𝑔𝑚 ( 1
𝑟𝑜

+ 1
𝑅𝐷

)
−1

= −𝑔𝑚𝑅𝑜𝑢𝑡 (2.51)

Figure 2.25.: Small-signal model for the circuit of Figure 2.20(a), with finite output conductance.

For 𝑅𝐷 → ∞ , the small signal voltage gain approaches the intrinsic voltage gain as given by
Equation 2.50. For 𝑅𝐷 ≪ 𝑟𝑜, we can approximate 𝐴𝑣 ≅ –𝑔𝑚𝑅𝐷. More generally, without even
knowing the exact values of 𝑟𝑜 and 𝑅𝐷, we can argue that as long as the desired gain is much less
(in magnitude) than the intrinsic voltage gain, 𝑟𝑜 can be neglected in the voltage gain calculation.
To see this, we can rewrite Equation 2.51 as

1
|𝐴𝑣| = 1

𝑔𝑚𝑟𝑜
+ 1

𝑔𝑚𝑅𝐷

𝑔𝑚𝑅𝐷 = |𝐴𝑣|
1 − |𝐴𝑣|

𝑔𝑚𝑟𝑜

≅ |𝐴𝑣| for |𝐴𝑣| ≪ 𝑔𝑚𝑟𝑜 (2.52)

Example 2-6: Analysis of a CS Amplifier Using the 𝜆 -Model

Consider the CS voltage amplifier of Figure 2.20(a) with 𝑊 = 80 𝜇𝑚, 𝐿 = 2 𝜇𝑚 and 𝑅𝐷 = 50 𝑘Ω.
The gate is biased such that 𝑉𝑂𝑉 = 500𝑚𝑉 and 𝑉𝐵 is set to 2 𝑉 , which is also the desired output
operating point 𝑉𝑂𝑈𝑇 . Compute the required bias current 𝐼𝐵 and the small-signal voltage gain of
the circuit using the 𝜆-model. Repeat the small-signal voltage gain calculation for 𝑅𝐷 = 5 𝑘Ω.
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

SOLUTION

The bias current is found using

𝐼𝐵 = 𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2(1 + 𝜆𝑛𝑉𝐷𝑆)

1
2 ⋅ 50𝜇𝐴

𝑉 2 ⋅ 80
2 (0.5𝑉 )2(1 + 0.05 ⋅ 2)

= 275𝜇𝐴

The corresponding transconductance and output resistance at the operating point are

𝑔𝑚 = 2𝐼𝐷
𝑉𝑂𝑉

= 2 ⋅ 275𝜇𝐴
0.5𝑉 = 1.1𝑚𝑆

𝑟𝑜 = 1 + 𝜆𝑛𝑉𝐷𝑆
𝜆𝑛𝐼𝐷

= 1 + 0.05 ⋅ 2
0.5𝑉 −1 ⋅ 275𝜇𝐴 = 80𝑘Ω

According to Equation 2.51, the small signal voltage gain for 𝑅𝐷 = 50 𝑘Ω is given by

𝐴𝑣 = −1.1𝑚𝑆( 1
80𝑘Ω + 1

50𝑘Ω)−1 = −33.9

for 𝑅𝐷 = 5 𝑘Ω we find

𝐴𝑣 = −1.1𝑚𝑆( 1
80𝑘Ω + 1

5𝑘Ω)−1 = −5.18

Since the voltage gain for 𝑅𝐷 = 5 𝑘Ω is much less than the intrinsic voltage gain of the transistor
(𝑔𝑚𝑟𝑜 = 88), it is appropriate to neglect 𝑟𝑜 in this calculation. We can simply compute

𝐴𝑣 = −1.1𝑚𝑆 ⋅ 5𝑘Ω = −5.5

This result differs only by about 5.9% from the accurate calculation.

Another opportunity for useful engineering approximations in the application of the 𝜆-model lies
in the operating point calculation. We will illustrate this point through the example below.

Example 2-7: Approximate Operating Point Calculations

Recalculate 𝐼𝐷, 𝑔𝑚 and 𝑟𝑜 by approximating 𝜆𝑉𝐷𝑆 ≅ 0 in the large-signal bias point calculations.
Also recalculate 𝐴𝑣 for 𝑅𝐷 = 50 𝑘Ω using this approximation. Compare the results to the values
obtained in Example 2-6.

SOLUTION

For 𝜆 𝑉𝐷𝑆 � 0, the bias current is estimated as
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2.3. Channel Length Modulation

𝐼𝐵 = 𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2

= 1
2 ⋅ 50𝜇𝐴

𝑉 2 ⋅ 80
2 (0.5𝑉 )2

= 250𝜇𝐴

The corresponding transconductance and output resistance at the operating point are

𝑔𝑚 = 2𝐼𝐷
𝑉𝑂𝑉

= 2 ⋅ 250𝜇𝐴
0.5𝑉 = 1𝑚𝑆

𝑟𝑜 = 1
𝜆𝑛𝐼𝐷

= 1
0.5𝑉 −1 ⋅ 250𝜇𝐴 = 80𝑘Ω

and the voltage gain becomes

𝐴𝑣 = −1𝑚𝑆( 1
80𝑘Ω + 1

50𝑘Ω)−1 = −30.8

Relative to the accurate calculation from Example 2-6 (𝐴𝑣 = –33.9), this result is in error by only
about 9.1%.

There are several reasons why it is commonly acceptable to neglect the 𝜆𝑉𝐷𝑆 term in bias point
hand calculations. First, without this approximation, the calculations can become cumbersome
and lead to transcendental equations that are tedious and undesirable to solve in light of only a
moderate percent-improvement in the obtained accuracy. If a more accurate result is desired, it
can often be obtained more easily from computer simulations, which often follow a hand calculation
in practice anyway. Last, one can argue that any circuit in which the operating point parameters
strongly depend on 𝜆 may be impractical in the first place. The accuracy of the 𝜆-model as far as
absolute I-V values are concerned can only be approximate due to its empirical nature. For high
accuracy analysis, much more complex models (such as the one described in Reference 7) must
be used, carefully calibrated with physical measurements and subsequently evaluated in computer
simulations. For the purpose of developing an introductory feel for circuits, however, the 𝜆-model
is still the most appropriate, mainly due its simplicity.

Table 2-3 summarizes the technology parameters introduced in this chapter.

Table 2.3.: Standard technology parameters for the 𝜆-model.
Parameter n-channel MOSFET p-channel MOSFET
Threshold voltage 𝑉𝑇 𝑛 = 0.5V 𝑉𝑇 𝑝 = -0.5V
Transconductance parameter 𝜇𝑛𝐶𝑜𝑥 = 50𝜇𝐴/𝑉 2 𝜇𝑝𝐶𝑜𝑥 = 25𝜇𝐴/𝑉 2

Chanel length modulation
parameter

𝜆𝑛 = 0.1𝑉 −1/𝐿 (L in 𝜇 m) 𝜆𝑝 = 0.1𝑉 −1/𝐿 (L in 𝜇 m)
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2. Transfer Characteristic of the Common-Source Voltage Amplifier

2.4. Two-Port Model for the Common-Source Voltage Amplifier

The circuit shown in Figure 2.25 corresponds to a transconductance amplifier model (with voltage
output) since we modeled the MOSFET as a voltage controlled current source, which is in line
with its physical behavior in the saturation region. Alternatively, and since the circuit is meant to
function as a voltage amplifier, we can equivalently model it using a native voltage amplifier two-
port as shown in Figure 2.26. The reader can prove that for this model the open-circuit voltage
gain is given by 𝐴𝑣 = –𝑔𝑚𝑅𝑜𝑢𝑡, where 𝑅𝑜𝑢𝑡 corresponds to the parallel connection of 𝑅𝐷 and
𝑟𝑜. The native voltage amplifier model is sometimes preferred since it more directly expresses the
intended function we assumed in this chapter. However, as we shall see in Chapter 3, the voltage
amplifier two-port is no longer a convenient representation for the CS voltage amplifier when device
capacitances are included.

Figure 2.26.: Equivalent voltage amplifier-based model for the common-source amplifier circuit Fig-
ure 2.25.

Figure 2.27 shows the small-signal commonsource voltage amplifier model together with an input
transducer and load resistance. Since the input resistance of the CS amplifier is infinite, no resistive
division takes place at the input port and 𝑣𝑖𝑛 = 𝑣𝑠. Thus, the overall voltage gain is computed
as

𝐴′
𝑣 = 𝑣𝑜𝑢𝑡

𝑣𝑠
= 𝐴𝑣 ⋅ ( 𝑅𝐿

𝑅𝐿 + 𝑅𝑜𝑢𝑡
) (2.53)

The same expression can be found from the circuit of Figure 2.25 with 𝑅𝐿 included across the
output port. The reader is invited to prove this.

As a final note, we should emphasize that adding a load resistance may have implications on the
bias point of the circuit. For example, if the load resistor carries a DC current, this current will
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Figure 2.27.: Common-source amplifier model with transducer and load resistance.

affect the quiescent point output voltage of the amplifier. In this case, the load resistance must
also be connected to the circuit in the operating point analysis where the small-signal parameters
such as 𝑟𝑜 are computed. Problem 2-17 looks at an example.

2.5. Summary

In this chapter we reviewed the basic I-V characteristics of a MOSFET and employed this device to
construct examples of common-source voltage amplifiers. In deriving a model for the MOSFET, we
concentrated on first-order effects that define the transistor’s operation. The nonlinear nature of
even the simplest device model dictates the use of small-signal approximations to enable analyses
with manageable complexity. The presented methodology begins by finding the operating point of
the transistor. Next, the small-signal equivalent is used to construct a linear small-signal model for
further analysis.

We studied the basic common-source voltage amplifier with drain resistance and found that the
voltage gain in this circuit is directly proportional to the voltage drop across the resistor, which
imposes practical limits on the achievable voltage gain. A modified circuit based on an auxiliary
bias current source was then analyzed as an alternative and used as a motivation to incorporate
the effect of channel length modulation using the 𝜆-model.

The most important concepts that you should have mastered are:

• Determining MOSFET drain currents in all regions of operation; determining the regions of
operation based on the transistor’s terminal voltages.

• Constructing transfer characteristics and load line plots for common-source stages for various
drain bias configurations.

• Calculating the operating point of a CS stage and the MOSFET’s small-signal parameters
𝑔𝑚 and 𝑟𝑜.

• Drawing the small-signal model of a CS stage and calculating its voltage gain.
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2. Transfer Characteristic of the Common-Source Voltage Amplifier
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2.7. Problems

Unless otherwise stated, use the standard model parameters specified in Table 2.3 for the problems
given below. Consider only first-order MOSFET behavior and include channel length modulation
(as well as any other second-order effects) only where explicitly stated.

P2.1 An n-channel transistor biased in saturation with 𝑊/𝐿 = 10 carries a drain current of 200
𝜇A when 𝑉𝐺𝑆 = 1.5 𝑉 is applied. With 𝑉𝐺𝑆 = 1 𝑉 , the current drops to 50 𝜇A. Determine 𝑉𝑇 𝑛
and 𝜇𝐶𝑜𝑥 of this transistor.

P2.2 Show that two MOS transistors in series with channel lengths 𝐿1 and 𝐿2 and identical channel
widths can be modeled as one equivalent MOS transistor with length 𝐿1 + 𝐿2 (see Figure 2.28).
Assume that 𝑀1 and 𝑀2 have identical parameters except for their channel lengths. Hint: there
are (at least) two ways to solve this problem. One is through extensive algebra; the other is though
physical insight and arguments based on the MOSFET cross-section.

P2.3 Derive an analytical expression for the input voltage that corresponds to the transition point
(point 𝐶) between the saturation and triode regions in Figure 2.7(b).

P2.4 In Example 2-4, we calculated the most negative input excursion that the circuit in Figure 2.10
can handle before the output is clipped to the supply voltage. In this problem, calculate the most
positive input excursion that can be applied before the MOSFET enters the triode region. Assume
the same parameters as in Example 2-4: 𝑉𝐷𝐷 = 5 𝑉 , 𝑅𝐷 = 10 𝑘Ω, W/L = 10, and 𝑉𝐼𝑁 is adjusted
to 1.5 𝑉 , so that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 at the circuit’s operating point.

P2.5 For the circuit shown in Figure 2.29, sketch 𝑣𝑂𝑈𝑇 as a function of 𝑣𝐼𝑁 . Assume that 𝑣𝐼𝑁 varies
from 0 to 5 𝑉 . There is no need to carry out any detailed calculations; simply draw a qualitative
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Figure 2.28.

graph and mark pertinent asymptotes and breakpoints (such as changes in the MOSFETs region
of operation).

Figure 2.29.

P2.6 Derive the small-signal voltage gain given by Equation 2.27 through direct differentiation of
Equation 2.17, i.e., apply 2.25.

P2.7 A field effect transistor built using a new (fictitious) material behaves “almost” exactly like a
conventional MOSFET in silicon technology. The large signal I-V characteristic (in the saturation
region) is given by

𝐼𝐷 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛)2.5

Assuming that 𝜇𝐶𝑜𝑥𝑊/𝐿 = 100 𝜇𝐴/𝑉 2.5 and 𝐼𝐷 = 1 𝜇A,
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compute the transconductance of the device.

P2.8 The ratio of the small-signal drain current excursion and quiescent point drain current (𝑖𝑑/𝐼𝐷)
is sometimes called the drain modulation index. Show that for a MOSFET, 𝑖𝑑/𝐼𝐷 is twice as large
as the relative excursion in the gate-source voltage, 𝑣𝑔𝑠/𝑉𝑂𝑉 .

P2.9 Consider the CS amplifier shown Figure 2.10(a). Calculate the small-signal voltage gain
assuming 𝑉𝐼𝑁 = 1.5 𝑉 , W/L = 20, 𝑅𝐷 = 5 𝑘Ω, and 𝑉𝐷𝐷 = 5 𝑉 . Be sure to check the device’s
region of operation.

P2.10 Consider the p-channel CS amplifier shown in Figure 2.15(a). Assuming 𝑊/𝐿 = 20, 𝑅𝐷 =
5 𝑘Ω, and 𝑉𝐷𝐷 = 5 𝑉 , calculate the required quiescent point input voltage so that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 .
What is the small-signal gain of the circuit?

P2.11 Repeat Problem 2.9 with 𝑅𝐷 = 10 𝑘Ω. With this value, the MOSFET operates in the triode
region. Compute the small-signal voltage gain by writing the large-signal relationship between the
input and output for the triode region and subsequent differentiation at the operating point.

P2.12 Consider the cascade connection of two CS amplifiers as shown in Figure 2.30.

(a) Draw the small-signal equivalent model for this circuit.

(b) Calculate the small-signal voltage gains 𝑣𝑜𝑢𝑡1/𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡2/𝑣𝑖𝑛. Assume that 𝑉𝐼𝑁 = 𝑉𝐷𝐷/2
and that the device sizes are chosen such that the bias points of nodes 𝑣𝑜𝑢𝑡1 and 𝑣𝑜𝑢𝑡2 are
also exactly at 𝑉𝐷𝐷/2 .

Figure 2.30.

P2.13 Repeat Problem 2.9 and include the effect of channel length modulation in the small-signal
voltage gain calculation. Neglect channel length modulation in the bias point calculation. Quantify
the percent difference in the calculated small-signal voltage gain compared to Problem 2.9. Assume
that the channel length of the MOSFET is 2 𝜇m.

P2.14 For the p-channel common-source amplifier shown in Figure 2.15(a)
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(a) Given 𝑊/𝐿 = 12 𝜇𝑚/2 𝜇𝑚 and 𝑅𝐷 = 10 𝑘Ω, calculate 𝑉𝐼𝑁 such that 𝑉𝑂𝑈𝑇 is 2.5 𝑉 . 𝑉𝐷𝐷
= 5𝑉 . Neglect channel length modulation in this calculation.

(b) What is the small-signal voltage gain, 𝐴𝑣 = 𝑣𝑜𝑢𝑡/𝑣𝑖𝑛 ? Include the effect of channel-length
modulation in your calculation.

(c) To increase the voltage gain, you increase 𝑅𝐷 to 100 𝑘Ω. Calculate the new small-signal
voltage gain, 𝐴𝑣. You must re-bias the circuit so that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 .

(d) We could also try to increase the voltage gain of the initial circuit by increasing 𝑊/𝐿 rather
than 𝑅𝐷. Calculate the new 𝐴𝑣 if 𝑊/𝐿= 120 𝜇𝑚 /2 𝜇𝑚 and 𝑅𝐷 = 10 𝑘Ω. Be sure to re-bias
the circuit so that 𝑉𝑂𝑈𝑇 = 2.5 𝑉 .

P2.15 Calculate the small-signal gain of the intrinsic gain stage shown in Figure 2.23(a), assuming
𝑊= 10 𝜇𝑚 and using the parameters given below. In each case, explicitly calculate the gate
overdrive voltage (𝑉𝑂𝑉 ), the transconductance (𝑔𝑚) and the output resistance (𝑟𝑜). Assume that the
circuit is biased such that the MOSFET operates in the saturation region. Neglect 𝑉𝐷𝑆 dependence
in the calculation of 𝑟𝑜 .

(a) 𝐼𝐷 = 100 𝜇A, 𝐿 = 2 𝜇m
(b) 𝐼𝐷 = 50 𝜇A, 𝐿 = 2 𝜇m
(c) 𝐼𝐷 = 100 𝜇A, 𝐿 = 4 𝜇m

P2.16 Consider the CS amplifier of Figure 2.20(a) with the following parameters: 𝑉𝐵 = 2.5 𝑉 ,
𝐼𝐵 = 500 𝜇A, 𝑊 = 20 𝜇m, 𝐿 = 1 𝜇m, and 𝑅𝐷 = 5 𝑘Ω .

(a) Calculate the exact value of 𝑉𝐼𝑁 required such that 𝐼𝐷 = 𝐼𝐵, and 𝑉𝑂𝑈𝑇 = 𝑉𝐵. Include the
effect of channel length modulation in your calculation.

(b) Using the value of 𝑉𝐼𝑁 found in part (a), re-compute 𝑉𝑂𝑈𝑇 for the two cases when 𝜆 changes
by +50% and -50%, respectively. Such discrepancies may be due to variations in the semi-
conductor process or simply due to uncertainty in the simplistic 𝜆-model.

P2.17 Consider the CS amplifier shown in Figure 2.31 with the following parameters: 𝑉𝐷𝐷 = 5 𝑉 ,
𝑉𝐼𝑁 = 1.8 𝑉 , W = 15 𝜇𝑚, L = 1 𝜇𝑚, 𝑅𝐷 = 5 𝑘Ω, and 𝑅𝐿 = 10 𝑘Ω.

(a) Calculate the output quiescent point voltage and drain current of the circuit, taking the con-
nected load resistance 𝑅𝐿 into account. Ignore channel-length modulation in this calculation.

(b) Calculate 𝑔𝑚 and 𝑟𝑜 using the parameters from part (a). Take 𝑉𝐷𝑆 dependence into account.

(c) Draw a two-port voltage amplifier model for the circuit and calculate the open-circuit voltage
gain (𝐴𝑣) and overall voltage gain (𝐴′

𝑣) with the load resistor connected.

(d) Repeat parts (a) and (b) without considering the connected 𝑅𝐿 and recompute the two-port
parameters of part (c). Summarize the observed differences.
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Figure 2.31.
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3. Frequency Response of the Common-Source
Voltage Amplifier

In the previous chapter, we have analyzed the common-source stage in terms of its static voltage
transfer characteristic and did not consider any dynamic effects in the relationship between the
circuit’s input and output. The obtained results are therefore applicable only in the limit of slowly
varying signals, and further analysis is needed to predict limits in the circuit’s operating speed.

In most electronic circuits, the speed of operation is fundamentally limited by the presence
of undesired capacitive elements. Therefore, for the purpose of including dynamic effects in the
common-source voltage amplifier, we will expand the MOSFET model with its capacitive elements.
In the spirit of the just-in-time modeling approach followed in this module, we first consider primary
effects related to intrinsic capacitance, i.e., capacitance that is unavoidable and required for
the operation of a MOSFET. We then refine our analysis to include extrinsic capacitances.
Extrinsic capacitances are not required for the operation of a MOSFET, but nonetheless exist due
to limitations or properties of a certain device structure or manufacturing process.

The analysis and inclusion of device capacitance will follow the small-signal modeling approach
used in Chapter 2. That is, even though most MOSFET device capacitances are inherently non-
linear, we will approximate them using linear elements at the MOSFET’s operating point. At the
various stages of the model development, we consider the dynamics of the amplifier for small-signal,
sinusoidal inputs in the steady-state. Specifically, we evaluate the phase and magnitude of the
amplifier’s output signal to quantify its behavior as a function of frequency.

Even though the small-signal abstraction greatly simplifies the analysis of circuit dynamics,
we will find that further simplifications and tools are needed to reason quickly and intuitively
about the limiting effects. Therefore, this chapter includes a treatment of the dominant pole
approximation, the Miller theorem, the Miller approximation, and the open-circuit time
constant (OCT) analysis. These techniques are broadly applicable and useful for the analysis of
a wide range of circuits, going far beyond the motivational common-source stage example treated
in this chapter.

Chapter Objectives

• Review the basic concepts of frequency domain analysis.
• Extend the small-signal MOSFET model with intrinsic and extrinsic device capacitances.
• Derive the sinusoidal steady-state frequency response of the common-source stage at

various levels of capacitance modeling and circuit abstraction.
• Review and develop tools and approximation methods that help simplify the frequency

response analysis of a circuit: dominant pole approximation, Miller theorem, Miller
approximation, and open-circuit time constant analysis.
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3.1. Review of Frequency Domain Analysis

In this section, we will review important pre-requisite material using the RC circuit shown in
Figure 3.1 as a driving example. Our objective is to gain insight into the circuit’s behavior when
a sinusoidal signal of a given frequency is applied at its input. Since the circuit consists of linear
elements, it follows that the output can only contain a sinusoid at the same frequency that is
applied. Therefore, all we need to determine is the amplitude and phase of the output sinusoid.
Note that even though we restrict ourselves to sine waves, the analysis results are generally useful
since arbitrary periodic signals can be constructed from a sum of sinusoids

Figure 3.1.: RC circuit example.

From first principles, we could approach this problem by applying 𝐾𝐶𝐿 and 𝐾𝑉 𝐿, noting that
the current flowing through a capacitor is given by 𝐶 ⋅ 𝑑𝑣/𝑑𝑡. The result of this analysis is a linear
differential equation that links 𝑣𝑖𝑛(𝑡) and 𝑣𝑜𝑢𝑡(𝑡). This equation can be solved for a sinusoidal input,
yielding in general two components that make up the output. The first is called the transient part;
it decays to zero for 𝑡 → ∞ . The second is called the steady-state component, and it persists for
all 𝑡. This latter component is what we are interested in.

A convenient shortcut to obtain the steady-state response is to work with Laplace transform
models for each circuit element and to determine the transfer functions in the 𝑠-domain. Once
an 𝑠-transfer function is created, the circuit’s steady-state response to a sinusoidal input is found
by letting 𝑠 = 𝑗𝜔 and by computing the phase and the magnitude of the output as a function of
frequency (𝜔). The resulting characteristic is called the frequency response of the circuit and
is usually plotted in the format of a Bode plot. The involved variables that capture how the
magnitude and phase vary with frequency are called phase vectors or phasors. In this module,
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3.1. Review of Frequency Domain Analysis

the notation for phasors uses an uppercase variable name and lowercase subscripts such as 𝑉𝑖𝑛 and
𝐼𝑜𝑢𝑡. We will now illustrate the flow of such an analysis using the 𝑅𝐶 circuit example

Example 3-1: Frequency Response of an RC Circuit

Find the magnitude and phase of the transfer function 𝑉𝑜𝑢𝑡 /𝑉𝑖𝑛 in for the 𝑅𝐶 circuit in Fig-
ure 3.1.

SOLUTION

We begin by noting that in the 𝑠-domain, the reactance of a capacitor is given by 1/𝑠𝐶. By applying
the voltage divider rule, we can therefore write a transfer function that links 𝑣𝑜𝑢𝑡 and 𝑣𝑖𝑛 in the
𝑠-domain as follows

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
1

𝑠𝐶
1

𝑠𝐶 + 𝑅 = 1
1 + 𝑠𝑅𝐶

In order to evaluate this transfer function for steady-state sinusoids, we let 𝑠 = 𝑗𝜔 and obtain

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

∣
𝑠=𝑗𝜔

= 1
1 + 𝑠𝑅𝐶

Following the rules for determining the magnitude and phase of a complex number, we obtain

∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ = √ 1
1 + (𝜔𝑅𝐶)2

and

∠𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= tan−1(−𝜔𝑅𝐶)

From this result, we see that for 𝜔𝑅𝐶 ≫ 1 the sinusoid is attenuated and shifted by –90∘, i.e.

∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ = 1
𝜔𝑅𝐶 ∠𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
≃ −90∘

For 𝜔𝑅𝐶 ≪ 1, the sinusoid is passed unattenuated and with no phase shift, i.e.,

∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ ≃ 1 ∠𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

≃ 0∘

This result makes intuitive sense, since the capacitor carries a larger current for high frequencies,
increasingly “shorting” the output port and attenuating the signal. At high frequencies, the phase
approaches –90∘ due to the signal differentiation that takes place in the capacitor. Its current is
given by 𝐶 ⋅ 𝑑𝑣/𝑑𝑡, and differentiation of a sine wave yields a cosine wave that is –90∘ shifted in
phase.

89



3. Frequency Response of the Common-Source Voltage Amplifier

3.1.1. Bode Plots

In order to gain further insight from the magnitude and phase of a circuit, it is customary to plot
the response in the form of a Bode plot, which shows the log of the magnitude versus the log of
the frequency, and the phase angle versus the log of the frequency. In this representation, the
magnitude and phase can be inspected over many orders of magnitude in frequency.

Figure 3.2.: Bode plot for the RC circuit example of Figure 3.1. (a) Log magnitude vs. log frequency.
(b) Phase vs. log frequency.

A Bode plot for the circuit of Figure 3.1 is shown in Figure 3.2. A few interesting features
can be identified from this plot as follows. First, recall from the analysis of the circuit that for
very high frequencies, where 𝜔 ≫ 1/𝑅𝐶, the magnitude of the transfer function becomes inversely
proportional to frequency. This is seen in the high-frequency region of the plot where the magnitude
decreases by a factor of 10 for every factor of 10 increase in 𝜔. Second, an interesting point in the
Bode plot is where 𝜔 = 1/𝑅𝐶, also called the breakpoint frequency. At the breakpoint, the
magnitude is given by
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3.1. Review of Frequency Domain Analysis

∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ = ∣ 1
1 + 𝑗𝜔𝑅𝐶 ∣ = ∣ 1

1 + 𝑗 ∣ = 1√
2

= 0.707 (3.1)

and the phase is

∠𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= tan−1(−𝜔𝑅𝐶) = tan−1(−1) = −45∘ (3.2)

It is customary to express the logarithmic magnitude scale on a Bode plot with a dimensionless
unit called a decibel (dB). The magnitude of the ratio of voltages in units of dB is:

Ratio of voltages in decibels: 20 log ∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ dB
Therefore, in terms of decibels (indicated on the right-hand 𝑦-axis in Figure 3.2) the magnitude
falls at –20 dB/decade at high frequencies. Expressed in decibels, the magnitude of the voltage at
the breakpoint frequency 𝜔 = 1/𝑅𝐶 is 20 log(1/

√
2) ≃ −3 dB.

The bandwidth of a circuit is a measure for the frequency range across which it exhibits only a
small amount of attenuation. For a low-pass circuit (such as the RC circuit under investigation),
the bandwidth is defined as the frequency for which the magnitude has dropped by a factor of 1/

√
2

relative to its value at 𝜔 = 0 (DC gain). Since 1/
√

2 corresponds to −3 decibels, we refer to this
quantity as the 3-dB bandwidth, or symbolically

𝜔3𝑑𝐵 = 1
𝑅𝐶 (3.3)

As an additional example, we will now look at the frequency response of the RC circuit with an
additional resistor added in series with the capacitor 𝐶, as shown in Figure 3.3.

Example 3-2: RC Circuit with Additional Resistor

Find the magnitude and phase of the voltage transfer function for the circuit in Figure 3.3 and
draw the corresponding Bode plot.

SOLUTION

By applying the voltage divider rule, we find

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
1

𝑠𝐶 + 𝑅
1

𝑠𝐶 + 𝑅 + 𝑅 = 1 + 𝑠𝑅𝐶
1 + 2𝑠𝑅𝐶

Next, we let 𝑠 = 𝑗𝜔 and obtain

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

∣
𝑠=𝑗𝜔

= 1 + 𝑗𝜔𝑅𝐶
1 + 2𝑗𝜔𝑅𝐶

and finally

∣𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

∣ = √ 1 + (𝜔𝑅𝐶)2

1 + 2(𝜔𝑅𝐶)2
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3. Frequency Response of the Common-Source Voltage Amplifier

Figure 3.3.: RC circuit with series resistor.

and

∠𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= tan−1(−𝜔𝑅𝐶) + 𝑡𝑎𝑛−1(−2𝜔𝑅𝐶)

The Bode plot for these expressions is found in Figure 3.4. As we can see, the plot is similar to the
previous example in terms of the low-frequency behavior and first breakpoint. There is, however,
a second breakpoint beyond which the magnitude approaches a constant value of –6 dB (= 0.5),
and the phase begins to return back to 0∘. This behavior is intuitively understood by inspection
of the circuit. At high frequencies, the capacitor becomes a short, essentially leaving a resistive
voltage divider. Since the resistors are of equal value, the voltage attenuation approaches 0.5 at
high frequencies. Similarly, the phase returns to 0∘ because the resistive division at high frequencies
has no impact on the signal’s phase.

3.1.2. Poles and Zeros

In linear system theory, poles and zeros are the 𝑠-values for which the value of the 𝑠-domain
transfer function becomes infinity or zero, respectively. Since the behavior of a linear system is
fully determined by the location of its poles and zeros, it is desirable to factor the transfer function
in the following general format:
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Figure 3.4.
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3. Frequency Response of the Common-Source Voltage Amplifier

𝐻(𝑠) = 𝐾
(1 − 𝑠

𝑧1
) (1 − 𝑠

𝑧2
) … (1 − 𝑠

𝑧𝑚
)

(1 − 𝑠
𝑝1

) (1 − 𝑠
𝑝2

) … (1 − 𝑠
𝑝𝑛

)
(3.4)

where 𝐾 is a constant DC gain term, 𝑝1, 𝑝2, ...𝑝𝑛 are the poles and 𝑧1, 𝑧2, ..., 𝑧𝑚 are the zeros. For
example, the 𝑠-domain transfer function of Example 3-2 is given by

𝐻(𝑠) = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
(1 − 𝑠

𝑧1
)

(1 − 𝑠
𝑝1

)
(3.5)

where

𝑧1 = − 1
𝑅𝐶 𝑎𝑛𝑑 𝑝1 = − 1

2𝑅𝐶 (3.6)

The reason why 𝑝1 and 𝑧1 are called poles and zeros can be understood from the plot in Figure 3.5,
which evaluates Equation 3.5 using the complex argument 𝑠 = 𝜎 + 𝑗𝜔. At 𝑠 = 𝑝1, the magnitude
of 𝐻(𝑠) becomes infinite, resembling the pole of a tent holding up the 2-dimensional sheet in this
representation. Likewise, at 𝑠 = 𝑧1, the magnitude of 𝐻(𝑠) becomes zero; this could be viewed as
pegs pinning down the tent at this particular location.

Since the steady-state magnitude response of the circuit is obtained by letting 𝑠 = 𝑗𝜔, it simply
corresponds to the bold line marked at the front edge of the plot. In other words, evaluating 𝐻(𝑠)
for the magnitude response corresponds to “walking” on the sheet of Figure 3.5 along the 𝜔 axis.

As we can see from Equation 3.6, the poles and zeros of the example considered here are
(negative) real numbers. For arbitrary ratios of polynomials in 𝑠, the poles and zeros as expressed
in Equation 3.4 can be complex numbers. For all circuits considered in this module, however, the
poles and zeros will be real. Furthermore, all poles will be negative, as required for a stable system.
The zeros encountered in this module can be either positive or negative as in 3.6. A negative zero
is called a left half plane (LHP) zero, since it lies on the left side of the 𝑠-plane. A positive zero
is called a right half plane (RHP) zero, since it lies on the right hand side of the 𝑠-plane.
When all the poles and zeros of a system are real, it is possible to create a set of rules that allow
the construction of a bode plot by inspection. These rules are summarized in the next section.

3.1.3. Bode Plots of Arbitrary System Functions with Real Poles and Zeros

For the case of real negative poles and zeros, and letting 𝑠 = 𝑗𝜔 , Equation 3.4 becomes

𝐻(𝑗𝜔) = 𝐾
(1 + 𝑗 𝜔

𝜔𝑧1
) (1 + 𝑗 𝜔

𝜔𝑧2
) … (1 + 𝑗 𝜔

𝜔𝑧𝑚
)

(1 + 𝑗 𝜔
𝜔𝑝1

) (1 + 𝑗 𝜔
𝜔𝑝2

) … (1 + 𝑗 𝜔
𝜔𝑝𝑛

)
(3.7)

where 𝜔𝑝1, 𝜔𝑝2, ...𝜔𝑝𝑛 are the pole frequencies and 𝜔𝑧1, 𝜔𝑧2, ..., 𝜔𝑧𝑚 are the zero frequencies. For
instance, in Example 3-2, we have
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3.1. Review of Frequency Domain Analysis

Figure 3.5.: 3-D plot of the magnitude of Equation 3.5, evaluated for 𝑠 = 𝜎 + 𝑗𝜔.
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𝐻(𝑗𝜔) = 𝐾
(1 + 𝑗 𝜔

𝜔𝑧1
)

(1 + 𝑗 𝜔
𝜔𝑝1

)
(3.8)

where

𝜔𝑧1 = 1
𝑅𝐶 𝑎𝑛𝑑 𝜔𝑝1 = 1

2𝑅𝐶 (3.9)

To determine the Bode plot from Equation 3.7, we must assess the effect of each binomial term
on the magnitude and phase of the system function. If the frequency is such that 𝜔 ≪ 𝜔𝑧𝑖 or 𝜔𝑝𝑖,
then the respective binomial term will have little effect on the magnitude and phase of the system
function, as it will simply multiply it by unity. On the other hand, if the frequency is such that
𝜔 ≪ 𝜔𝑧𝑖 or 𝜔𝑝𝑖, the system function, magnitude, and phase will be altered. To see this, we evaluate
the magnitude and phase of a general binomial term for a left half plane pole or zero and 𝜔 ≫ 𝜔𝑖

∣1 + 𝑗 𝜔
𝜔𝑖

∣ = √1 + ( 𝜔
𝜔𝑖

)
2

≃ 𝜔
𝜔𝑖

(3.10)

∠ (1 + 𝑗 𝜔
𝜔𝑖

) = 𝑡𝑎𝑛−1 ( 𝜔
𝜔𝑖

) ≃ 90∘ (3.11)

Therefore, if the binomial term is in the numerator of the generalized system function (corresponding
to a LHP zero), the magnitude will be multiplied by 𝜔/𝜔𝑖, and a phase angle of 90∘ will be added
to the total phase. If the binomial term is located in the denominator (LHP pole), the magnitude
will be multiplied by 1/(𝜔/𝜔𝑖) and a phase angle of 90∘ will be subtracted from the total phase.
For a RHP zero, it follows that the magnitude will be multiplied by 𝜔/𝜔𝑖, and a phase angle of 90∘

will be subtracted from the total phase.

When 𝜔 = 𝜔𝑖, the magnitude and phase are

∣1 + 𝑗 𝜔
𝜔𝑖

∣ = |1 + 𝑗| =
√

2 (3.12)

∠(1 + 𝑗) = 45∘ (3.13)

Therefore, if these binomial terms for the breakpoints are located in the numerator, the magnitude
of the system function in the numerator is multiplied by

√
2 and a phase of 45∘ is added to (for a

LHP zero) or subtracted from (for a RHP zero) the overall phase. If it is located in the denominator,
the magnitude is multiplied by 1/

√
2 and a phase of 45∘ is subtracted from the overall phase of the

system function.

Given these results, a Bode plot can be constructed by referring to the following step-by-step
procedure.

• Identify all the breakpoint frequencies 𝜔𝑝𝑖 and 𝜔𝑧𝑖 and list them in increasing order. Apply
the following rules, beginning with the lowest breakpoint frequency.
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3.2. Frequency Response of the Common-Source Voltage Amplifier — First-Pass Analysis

• If the corresponding binomial term appears in the numerator of the system function, the
magnitude slope will be increased by 20 dB/decade, when the frequency is greater than the
breakpoint frequency.

• If the corresponding binomial term appears in the denominator of the system function, the
magnitude of the slope will be reduced by 20 dB/decade when the frequency is greater than
the breakpoint frequency.

• To plot the phase, we know that the binomial term will contribute +45∘ for a LHP zero, and
−45∘ for a RHP zero at 𝜔 = 𝜔𝑖. If it is in the denominator, it will contribute −45∘. We
assume that the ±90∘ phase changes linearly over the interval 0.1𝜔𝑖 < 𝜔 < 10𝜔𝑖.

Example 3-3: Bode Plot Construction

Construct a Bode plot for a system with the following parameters: 𝐾 = 100, 𝜔𝑝1 = 10 𝑟𝑎𝑑/𝑠, 𝜔𝑝2
= 100 𝑘𝑟𝑎𝑑/𝑠, left half plane zero: 𝜔𝑧1 = 1 𝑘𝑟𝑎𝑑/𝑠, right half plane zero: 𝜔𝑧2 = 10 𝑀𝑟𝑎𝑑/𝑠.

SOLUTION

First we note that the DC gain 𝐾 = 100 = 40 dB. Next we recognize that 𝜔𝑝1 is the lowest frequency
term, creating a change of slope in the magnitude plot toward –20 dB/decade. The phase is 0∘ at
the lowest frequency plotted, −45∘ at 𝜔𝑝1 and has reached −90∘ at approximately 10 𝜔𝑝1. Applying
the given rules in a similar fashion to the remaining poles and zeros yields the Bode plot shown in
Figure 3.6.

3.2. Frequency Response of the Common-Source Voltage Amplifier —
First-Pass Analysis

We now wish to apply the analysis tools reviewed in the previous section to get a handle on the
frequency response of the common-source voltage amplifier discussed in Chapter 2. Since the exact
frequency behavior of this circuit is quite complex when taking all aspects into account, we partition
this discussion into two steps. This section presents the first analysis step and uses the simplest
possible model extension for the MOSFET that can be used to take capacitive effects, and thus
frequency dependence, into account.

In the context of MOSFET capacitance modeling, it is useful to distinguish between intrinsic
and extrinsic capacitances. Here, the term extrinsic refers to capacitances that are not needed to
operate a MOSFET, but rather exist due to limitations or properties of a certain device structure
or manufacturing process. As we shall see in Section 3-3, stray capacitances between the gate and
source/drain terminals are examples of extrinsic capacitors. Intrinsic capacitance is unavoidable
and required to operate the device. The oxide capacitance of a MOSFET falls into this category:
without a capacitance between the gate and channel, no mobile charges can be induced (𝑄 = 𝐶𝑉 ),
and the MOSFET would not function. In this section, we will look at frequency dependence effects
due to the intrinsic capacitance only, beginning with a derivation of a circuit model that can be
used to model this capacitance in the frequency response calculations.
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Figure 3.6.
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3.2. Frequency Response of the Common-Source Voltage Amplifier — First-Pass Analysis

3.2.1. Modeling Intrinsic MOSFET Capacitance

Just as in the derivation of device transconductance and output conductance, the operating point
must be considered when calculating small-signal capacitances. We begin by analyzing the intrinsic
capacitance of a MOSFET in the triode region, with its cross-section shown in Figure 3.7(a). To
first-order, the gate and the conductive channel can be viewed as a parallel plate capacitor, resulting
in a gate-to-channel capacitance of

𝐶𝑔𝑐 = 𝑊𝐿𝜖𝑜𝑥
𝑡𝑜𝑥

= 𝑊𝐿𝐶𝑜𝑥 (3.14)

where 𝑊𝐿 is the capacitor plate area and 𝐶𝑜𝑥 is the oxide capacitance per unit area.

Figure 3.7.: (a) MOSFET cross-section showing the intrinsic capacitance between the gate and the
channel (𝐶𝑔𝑐). (b) Capacitance model for the triode region.

If the source and drain were connected together, the small signal capacitance from the gate to
source/drain would be equal to 𝐶𝑔𝑐 as given in Equation 3.14. How can we model the capacitance
when source and drain are not connected, i.e., how is the capacitance distributed between the two
terminals?

A common first-order approximation is to assign half of 𝐶𝑔𝑐 to the capacitance between the
gate and the source and the remaining half between the gate and the drain. This is schematically
illustrated in Figure 3.7(b). A qualitative argument that supports this approximation is that small
changes in either the drain or source voltage must induce the same change in charge at the gate;
therefore, the capacitance must be split equally.

A case that is more relevant to the analysis of a common-source stage is the behavior in the
saturation region. For this case, we know that the conductive channel does not extend all the way
from the source to the drain, but is pinched off at some coordinate 𝐿–Δ𝐿. When the channel
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is pinched-off, the drain potential (to first-order) no longer influences the charge under the gate.
Therefore, the intrinsic capacitance from the gate to the drain is approximately zero in this region
of operation.

In saturation, the channel charge is therefore controlled primarily by the potential between the
gate and the source, and a significant capacitance is present between these two terminals. At first
glance, one might expect that 𝐶𝑔𝑠 is equal to 𝐶𝑔𝑐. However, this is not quite correct due to the
pinch-off effect. Imagine applying a small voltage change to the source terminal. This will change
the voltage across the oxide (and charge) near the source, but at the pinch-off point, the voltage
across the oxide remains at 𝑉𝑇 𝑛. This means that the capacitance in the saturation egion must be
less than 𝐶𝑔𝑐, because the charge does not see a uniform change as in the case of a simple parallel
plate capacitor. Further analysis (see Reference 1) reveals that the capacitance between the gate
and the source in the saturation region is given by

𝐶𝑔𝑠 = 2
3𝐶𝑔𝑐 = 2

3𝑊𝐿𝐶𝑜𝑥 (3.15)

The resulting small-signal MOSFET model that includes this capacitance is shown in Figure 3.8.

Figure 3.8.: MOSFET small-signal model for the saturation region, including the intrinsic gate
capacitance.

3.2.2. Frequency Response with Intrinsic Gate Capacitance

To analyze the frequency response of the common-source amplifier with the intrinsic gate capac-
itance, we insert the model of Figure 3.8 into the small-signal circuit model of the amplifier, as
shown in Figure 3.9.
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Figure 3.9.: (a) Common-source amplifier driven by a transducer with finite source resistance. (b)
Small-signal model with the intrinsic gate capacitance.

Note that if the circuit were driven by an ideal voltage source at its input port (𝑣𝑖𝑛), the
added capacitance would have no effect on the circuit’s operation. The ideal voltage source would
provide any current that is needed to charge and discharge the gate capacitance without introducing
any frequency dependence. The model in Figure 3.9 therefore considers a more realistic input
source with finite resistance (𝑅𝑠). At this point in the analysis, we purposely do not include any
capacitive loading at the output of the amplifier, primarily to keep the first pass analysis simple
and transparent.

In order to analyze the frequency response of the circuit in Figure 3.9, we first realize that the
overall transfer function can be split into a product of two terms

𝑣𝑜𝑢𝑡
𝑣𝑠

= 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

⋅ 𝑣𝑖𝑛
𝑣𝑠

(3.16)

In this expression, the first term on the right-hand side corresponds to the DC voltage gain given
in Equation 2.51, and is equal to –𝑔𝑚𝑅𝑜𝑢𝑡. The second term can be found by writing the voltage
divider expression that relates node 𝑣𝑖𝑛 to 𝑣𝑠

𝑣𝑖𝑛
𝑣𝑠

=
1

𝑠𝐶𝑔𝑠
1

𝑠𝐶𝑔𝑠
+ 𝑅𝑠

= 1
1 + 𝑠𝑅𝑠𝐶𝑔𝑠

(3.17)

With this result, the complete s-domain transfer function from the input source to the output
becomes

𝐴𝑣(𝑠) = 𝑣𝑜𝑢𝑡
𝑣𝑠

= −𝑔𝑚𝑅𝑜𝑢𝑡
1 + 𝑠𝑅𝑠𝐶𝑔𝑠

= 𝐴𝑣0
1 + 𝑠𝑅𝑠𝐶𝑔𝑠

(3.18)
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where 𝐴𝑣0 = 𝐴𝑣(0) is a generalized placeholder for the DC gain of the circuit. From this result, we
see that the transfer function has a DC gain corresponding to the result of Chapter 2, and a single
pole that is set by the source resistance and the intrinsic gate capacitance. As explained in Section
3-1, we can now evaluate this transfer function for steady-state sinusoids by letting 𝑠 = 𝑗𝜔 . This
will allow us to draw a Bode plot and compute the bandwidth of the circuit.

Example 3-4: Common-Source Amplifier Bandwidth Calculation

Calculate the 3-dB bandwidth for the amplifier in Figure 3.9, assuming 𝑊 = 20𝜇𝑚, 𝐿 = 1𝜇𝑚, 𝐶𝑜𝑥
= 2.3 𝑓𝐹/𝜇𝑚2 and 𝑅𝑠 = 50 𝑘Ω. Express the result in units of Hertz.

SOLUTION

For the given parameters, the gate-source capacitance is

𝐶𝑔𝑠 = 2
3𝑊𝐿𝐶𝑜𝑥 = 30.67𝑓𝐹

The 3-dB bandwidth is

𝜔3𝑑𝐵 = 1
𝑅𝑠𝐶𝑔𝑠

= 652.3𝑀𝑟𝑎𝑑/𝑠

and therefore

𝑓3𝑑𝐵 = 𝜔3𝑑𝐵
2𝜋 = 103.8𝑀𝐻𝑧

An important question to ask at this point of the discussion is whether there is anything we
can do to maximize the bandwidth of our amplifier. Assuming that we cannot change the source
resistance 𝑅𝑠, the only remaining option is to minimize 𝐶𝑔𝑠. This can be achieved by choosing a
smaller transistor width or length [see Equation 3.15]. How will this affect the other performance
metrics in the circuit? In the next subsection, we will show that there exists a direct tradeoff in
the achievable bandwidth versus supply current for the circuit in consideration.

3.2.3. Tradeoff Between Bandwidth and Supply Current

Consider a design problem involving the circuit of Figure 3.9 and assume that the general objective
is to maximize the circuit’s 3-dB bandwidth while minimizing the transistor’s drain current. For
this analysis, we assume that 𝑅𝑠, 𝑅𝑜𝑢𝑡 and 𝐴𝑣0 are given through specifications, and that these
parameters cannot be varied. This assumption is not atypical in practical circuit design. 𝑅𝑠
might be fixed by the physical properties of the input transducer. 𝑅𝑜𝑢𝑡 could be set by an output
resistance requirement that allows the circuit to interface with subsequent circuit stages, while the
DC gain 𝐴𝑣0 could be determined by application requirements. Furthermore, for simplicity, we
neglect channel-length-modulation in this analysis.

In order to study the tradeoff between bandwidth and current consumption, we will now write
expressions for these quantities that rely on common parameters. For the 3-dB bandwidth, we
begin by inserting Equation 3.15 into Equation 3.15 and obtain
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𝜔3𝑑𝐵 = 3
2 ⋅ 1

𝑅𝑠𝑊𝐿𝐶𝑜𝑥
(3.19)

By using the following expression to eliminate 𝐶𝑜𝑥:

𝑔𝑚 = 𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐺𝑆 − 𝑉𝑇 𝑛) = 𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 𝑉𝑂𝑉 (3.20)

and subsequently substituting 𝑔𝑚 = |𝐴𝑣0|/𝑅𝑜𝑢𝑡, Equation 3.19 becomes

𝜔3𝑑𝐵 = 3
2 ⋅ 𝜇𝑛

𝐿2 ⋅ 1
|𝐴𝑣0| ⋅ 𝑅𝑜𝑢𝑡

𝑅𝑠
⋅ 𝑉𝑂𝑉 (3.21)

The above expression is now in a form that contains only technology parameters, design constraints
(𝑅𝑠, 𝑅𝑜𝑢𝑡,and 𝐴𝑣0) and the gate overdrive voltage 𝑉𝑂𝑉 as a single design parameter. From this result,
it is clear that in order to maximize bandwidth, we would like to use a technology that offers high
mobility and short channels. The mobility is largely determined by material properties, while 𝐿 is
usually bounded by some 𝐿 = 𝐿𝑚𝑖𝑛 that is specific to a certain process technology, for example, 1
𝜇𝑚 for the transistors used in this module.

From Equation 3.21, we also see that we should maximize 𝑉𝑂𝑉 . However, a potential problem
with this is due to the output signal range of the amplifier. As we know from Chapter 2, larger 𝑉𝑂𝑉
means that 𝑉𝐷𝑆𝑠𝑎𝑡 is also increased, and this means that the transistor enters the triode region at
higher 𝑣𝑂𝑈𝑇 . This could lead to clipping, as discussed previously.

An additional, and more fundamental issue relates to the current consumption of the circuit. To
see this, we rewrite Equation 2.31 as

𝐼𝐷 = 1
2 ⋅ 𝑔𝑚 ⋅ 𝑉𝑂𝑉 (3.22)

and substitute 𝑔𝑚 = |𝐴𝑣|/𝑅𝑜𝑢𝑡 to find

𝐼𝐷 = 1
2 ⋅ |𝐴𝑣0|

𝑅𝑜𝑢𝑡
⋅ 𝑉𝑂𝑉 (3.23)

This result shows that a larger 𝑉𝑂𝑉 unfortunately requires a larger bias current for the transistor,
and this is highly undesired in many applications, as for instance battery-powered devices.

While the above-observed tradeoff was discovered in the context of a particular circuit example,
we will see throughout this module that the same tradeoff holds for all analog circuits. For a
given technology and target specifications, current consumption directly scales with the circuit’s
3-dB bandwidth requirements. An alternative, and more general way to capture the fundamental
connection between supply current and bandwidth is to inspect the tradeoffs that pertain to the
MOSFET in isolation of a specific circuit example, as discussed next.

To begin, note that the model in Figure 3.8 comes with “desired” and “undesired” elements and
properties. The only aspect of the transistor that we value is its transconductance. The associated
intrinsic capacitance and the supply current needed to create the transconductance are undesired.
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Mathematically, we can identify the following figures of merit that capture the ratios between the
desired and undesired quantities, in particular:

𝑔𝑚
𝐼𝐷

= 2
𝑉𝑂𝑉

∝ 1√
𝐼𝐷

(3.24)

and

𝑔𝑚
𝐶𝑔𝑠

= 3
2 ⋅ 𝜇𝑛

𝐿2 ⋅ 𝑉𝑂𝑉 ∝
√

𝐼𝐷 (3.25)

The transconductance-to-current ratio, which is sometimes called the transconductance efficiency,
deteriorates for larger 𝑉𝑂𝑉 (and larger 𝐼𝐷). On the other hand, the ratio of transconductance per
intrinsic capacitance improves for larger 𝑉𝑂𝑉 (and larger 𝐼𝐷). This tradeoff is graphically illustrated
in Figure 3.10. Note that as already pointed out in Section 2-2-7, the proportionality of 𝑔𝑚/𝐼𝐷 to
1/𝑉𝑂𝑉 extends only down to a certain minimum gate overdrive, defined as 𝑉𝑂𝑉 𝑚𝑖𝑛 in this module
[see Equation 2.35].

Figure 3.10.: Tradeoff between 𝑔𝑚/𝐼𝐷 and 𝑔𝑚/𝐶𝑔𝑠.

In essence, the gate overdrive voltage 𝑉𝑂𝑉 can be considered as a “knob” that lets us adjust
the tradeoff between the two figures of merit. For a chosen 𝑉𝑂𝑉 and channel length, 𝑔𝑚/𝐼𝐷 and
𝑔𝑚/𝐶𝑔𝑠 are fixed, and these parameters directly affect the speed and current consumption of the
overall circuit. The gate overdrive 𝑉𝑂𝑉 has therefore been recognized by designers as an important
parameter that affects most of the tradeoffs encountered in the optimization of a given circuit (see
Reference 2). We will see examples of this throughout this module.
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Interestingly, the product of the two figures of merit in Equation 3.24 and Equation 3.25 is given
by

𝑔𝑚
𝐶𝑔𝑠

⋅ 𝑔𝑚
𝐼𝐷

= 3 ⋅ 𝜇𝑛
𝐿2 (3.26)

From this result, it is clear that for high speed and low current consumption, the best we can
hope for is a technology that provides high mobility and short channels. In this context, it is
interesting to note that improvements in device engineering and manufacturing processes have
provided tremendous improvements in manufacturable channel lengths. Since the 1970s, 𝐿𝑚𝑖𝑛 has
been improved from 10 𝜇𝑚 to approximately 22 𝑛𝑚 today; a 400𝑥 reduction!

3.2.4. Transit Frequency

The figure of merit given in Equation 3.25 is also known as the transit frequency of the transistor
and coincidentally quantifies the frequency for which the magnitude of the transistor’s current gain
drops to unity. To determine the transit frequency, the transistor is operated in the common-source
configuration and the input is driven by an ideal current source (see Figure 3.11). The output is
short-circuited, and the current gain 𝑖𝑜𝑢𝑡/𝑖𝑖𝑛 is measured.

Figure 3.11.: Small-signal circuit model for finding the MOSFET’s transit frequency.

From the circuit, it follows that

𝑖𝑜𝑢𝑡 = 𝑔𝑚 ⋅ 𝑣𝑔𝑠 = 𝑔𝑚 ⋅ 𝑖𝑖𝑛
𝑠𝐶𝑔𝑠

(3.27)

Substituting 𝑠 = 𝑗𝜔 and rearranging yields

𝐼𝑜𝑢𝑡
𝐼𝑖𝑛

= 𝑔𝑚
𝑗𝜔𝐶𝑔𝑠

(3.28)

The transit frequency then follows by setting
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∣ 𝐼𝑜𝑢𝑡
𝐼𝑖𝑛

∣ = 1 = 𝑔𝑚
𝜔𝑇 𝐶𝑔𝑠

(3.29)

and therefore

𝜔𝑇 = 𝑔𝑚
𝐶𝑔𝑠

∝ √𝐼𝐷 (3.30)

The above quantity represents the transit frequency in rad/s. The symbol for the corresponding
quantity in units of Hertz is 𝑓𝑇 = 𝜔𝑇 /2𝜋.

The transit frequency gives the designer a feel for the maximum frequency at which a circuit
can operate. The bandwidth of most practical circuit configurations is limited to a fraction of 𝜔𝑇 ,
often about one order of magnitude below.

3.3. Frequency Response of the Common-Source Voltage Amplifier—
Second-Pass Analysis

We will now extend the results from the previous section to obtain a more accurate understanding
of the frequency response of a realistic common-source amplifier. To begin, we will extend the
MOSFET model to include extrinsic capacitances.

3.3.1. Modeling Extrinsic MOSFET Capacitance

Figure 3.12 shows the cross section of a MOSFET device for further study of its associated capaci-
tive elements. The first component of extrinsic capacitance that we will consider is called overlap
capacitance; it is due to overlap of the source and drain diffusions and the gate and the contribu-
tion of the fringe electric fields from the gate. The overlap capacitance 𝐶𝑜𝑣 is quantified as a linear
capacitance proportional to the gate width, with units of 𝑓𝐹/𝜇𝑚.

With overlap capacitance included, the total gate-source capacitance in saturation is the sum of
Equation 3.15 and the overlap capacitance

𝐶𝑔𝑠 = 2
3𝑊𝐿𝐶𝑜𝑥 + 𝑊𝐶𝑂𝑉 (3.31)

Since the drain has no influence on the channel charge, the only contribution to the gate-drain
capacitance is 𝐶𝑂𝑉

𝐶𝑔𝑑 = 𝑊𝐶𝑂𝑉 (3.32)

In addition to the overlap capacitance, other extrinsic capacitance components are due to the
reverse-biased junctions of the MOSFET. The drain-bulk and source-bulk capacitances 𝐶𝑑𝑏 and 𝐶𝑠𝑏
indicated in Figure 3.12 originate from charge storage in the depletion regions between the drain
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Figure 3.12.: MOSFET cross section in saturation showing the overlap and fringe contributions to
𝐶𝑜𝑣. The source-bulk and drain-bulk depletion capacitances are also shown qualita-
tively.

and source n+ regions and the p-type bulk. The following expressions can be used to estimate
these capacitances (see Reference 1 for a derivation):

𝐶𝑑𝑏 = 𝐶𝐽 ⋅ 𝐴𝐷
(1 + 𝑉𝐷𝐵/𝑃𝐵)𝑀𝐽 = 𝐶𝐽𝑆𝑊 ⋅ 𝑃𝐷

(1 + 𝑉𝐷𝐵/𝑃𝐵)𝑀𝐽𝑆𝑊 (3.33)

𝐶𝑠𝑏 = 𝐶𝐽 ⋅ 𝐴𝑆
(1 + 𝑉𝑆𝐵/𝑃𝐵)𝑀𝐽 = 𝐶𝐽𝑆𝑊 ⋅ 𝑃𝑆

(1 + 𝑉𝑆𝐵/𝑃𝐵)𝑀𝐽𝑆𝑊 (3.34)

In these expressions, 𝑉𝐷𝐵 and 𝑉𝑆𝐵 are the reverse bias voltages of the junctions at the operating
point. Note that with increasing reverse bias, the values of the junction capacitances decreases.
The geometry parameters used in the expressions are related to the layout of the transistor as
shown in Figure 3.13.

• AD = Drain area

• AS = Source area

• PD = Perimeter of the drain diffusion (not including the edge under the gate)

• PS = Perimeter of the source diffusion (not including the edge under the gate)

All other parameters are defined in Table 3-1 along with the technology parameters introduced thus
far.

The extrinsic capacitances discussed above are added to the MOSFET small signal model as
shown in Figure 3.14. For completeness, this model contains an additional capacitance 𝐶𝑔𝑏 between
gate and bulk. This capacitance is due to the overlap of the polysilicon gate onto the field oxide
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Figure 3.13.: Geometry parameters used for the calculation of junction capacitances.

108



3.3. Frequency Response of the Common-Source Voltage Amplifier— Second-Pass Analysis

region that isolates the MOSFET, as well as field lines from the gate terminating in the bulk of the
transistor through the channel. This capacitance is usually small, and we will neglect it throughout
this module.

Last, it is important to note that we have only modeled capacitances associated with the
MOSFET, that is, the device without interconnections. The parasitic capacitances of the intercon-
nections between MOSFETs can be a limiting factor and must be estimated from the layout and
cross section for accurate analysis of a design. Off-chip wiring and package capacitances are also
critical for evaluating the performance of any integrated circuit.

3.3.2. Transit Frequency with Extrinsic Capacitances

With extrinsic capacitances included in the model, the transit frequency expression of Equation 3.30
modifies to

𝜔𝑇 = 𝑔𝑚
𝐶𝑔𝑠 + 𝐶𝑔𝑑

(3.35)

This can be seen by inserting the model of Figure 3.14 into the test setup of Figure 3.14. 𝐶𝑠𝑏 and
𝐶𝑑𝑏 are shorted to ground (assuming the bulk terminal is also grounded), while 𝐶𝑔𝑑 appears in
parallel with 𝐶𝑔𝑠.

Figure 3.14.: Small-signal model for the n-channel MOSFET in saturation, including intrinsic and
extrinsic capacitances.

Example 3-5: Mosfet Capacitance Calculation

Consider an n-channel MOSFET biased in saturation with 𝑉𝐷𝑆 = 2.5 𝑉 , 𝐼𝐷 = 500 𝜇𝐴, 𝐿= 1 𝜇𝑚,
and 𝑊= 20 𝜇𝑚. Determine all the capacitances in the small-signal model of Figure 3.14, except
the gate-bulk capacitance 𝐶𝑔𝑏 that we consider negligible. Also calculate the transistor’s transit
frequency. Use the standard technology parameters defined in Table 3-1.
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SOLUTION

Substituting 𝐶𝑜𝑥 and 𝐶𝑜𝑣 = 0.5 𝑓𝐹/𝜇𝑚 into Equation 3.31, together with the MOSFET dimensions,
we find

𝐶𝑔𝑠 = 2
3(20 ⋅ 1𝜇𝑚2) (2.3 𝑓𝐹

𝜇𝑚2 ) + 20𝜇𝑚 (0.5 𝑓𝐹
𝜇𝑚)

= 40.7𝑓𝐹

For the gate-drain capacitance, we obtain

𝐶𝑔𝑑 = 20𝜇𝑚 (0.5 𝑓𝐹
𝜇𝑚) = 10𝑓𝐹

The remaining capacitances are the pn junction depletion capacitances 𝐶𝑑𝑏 between the n+ drain
and the substrate and 𝐶𝑠𝑏 between the n+ source and the substrate. Evaluating Equation 3.34,
using the source junction bias voltage of 𝑉𝑆𝐵 = 0 𝑉 yields

𝐶𝑠𝑏 = 19𝑓𝐹

The drain junction has a bias voltage of 𝑉𝐷𝐵 = 𝑉𝑂𝑈𝑇 = 2.5 𝑉 . Evaluating Equation 3.33 with this
value and the given parameters gives

𝐶𝑑𝑏 = 11.6𝑓𝐹

Note that 𝐶𝑑𝑏 is smaller than 𝐶𝑠𝑏 due to the larger reverse bias across the drain-bulk junction. To
calculate the transit frequency, we first compute 𝑔𝑚 using

𝑔𝑚 = √2𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿 𝐼𝐷

= √2 ⋅ 50𝜇𝐴
𝑉 2 ⋅ 20

1 ⋅ 500𝜇𝐴 = 1𝑚𝑆

Therefore

𝑓𝑇 = 1
2𝜋 ⋅ 𝑔𝑚

𝐶𝑔𝑠 + 𝐶𝑔𝑑
= 1𝑚𝑆

40.7𝑓𝐹 + 10𝑓𝐹 = 3.14𝐺𝐻𝑧
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Table 3.1.: Standard technology parameters for the 𝜆-model, with intrinsic and extrinsic capaci-
tance parameters.

Parameter n-channel MOSFET p-channel MOSFET
Threshold voltage 𝑉𝑇 𝑛 = 0.5V 𝑉𝑇 𝑝 = -0.5V
Transconductance parameter 𝜇𝑛𝐶𝑜𝑥 = 50𝜇𝐴/𝑉 2 𝜇𝑝𝐶𝑜𝑥 = 25𝜇𝐴/𝑉 2

Chanel length modulation
parameter

𝜆𝑛 = 0.1𝑉 −1/𝐿
(𝐿 in 𝜇𝑚)

𝜆𝑝 = 0.1𝑉 −1/𝐿
(𝐿 in 𝜇𝑚)

Gate oxide capacitance per
unit area

𝐶𝑜𝑥 = 2.3𝑓𝐹/𝜇𝑚2

Overlap Capacitance 𝐶𝑜𝑣 = 0.5𝑓𝐹/𝜇𝑚
Zero-bias planar bulk
depletion capacitance

𝐶𝐽𝑛 = 0.1𝑓𝐹/𝜇𝑚2 𝐶𝐽𝑝 = 0.3𝑓𝐹/𝜇𝑚2

Zero-bias sidewall bulk
depletion capacitance

𝐶𝐽𝑆𝑊𝑛 = 0.5𝑓𝐹/𝜇𝑚 𝐶𝐽𝑆𝑊𝑝 = 0.35𝑓𝐹/𝜇𝑚

Bulk junction potential 𝑃𝐵 = 0.95 𝑉
Planar bulk junction grading
coefficient

𝑀𝐽 = 0.5

Sidewall bulk junction grading
coefficient

𝑀𝐽𝑆𝑊 = 0.33

Length of source and drain
diffusions

𝐿𝑑𝑖𝑓𝑓 = 3𝜇𝑚

3.3.3. Frequency Response with Intrinsic and Extrinsic Gate Capacitances

To analyze the frequency response of the common-source amplifier with intrinsic and extrinsic
capacitances, we insert the model of Figure 3.14 into the small-signal circuit model of the amplifier,
as shown in Figure 3.15(a). Note that we have neglected 𝐶𝑔𝑏 and also discarded 𝐶𝑠𝑏, since this
capacitor has both terminals shorted to ground.

To simplify the full analysis of the amplifier, we redraw it as shown in Figure 3.15(b). We have
taken the Norton equivalent at the input and combined the resistors at the input and output to
reduce the number of terms carried in the algebra.

We begin the analysis by writing 𝐾𝐶𝐿 at nodes 1 and 2

0 = − 𝑣𝑠
𝑅𝑠

+ 𝑣𝑔𝑠
𝑅𝑠

+ 𝑣𝑔𝑠𝑠𝐶𝑔𝑠 + (𝑣𝑔𝑠 − 𝑣𝑜𝑢𝑡)𝑠𝐶𝑔𝑑 (3.36)

0 = 𝑔𝑚𝑣𝑔𝑠 + 𝑠𝐶𝑔𝑑(𝑣𝑜𝑢𝑡 − 𝑣𝑔𝑠) + 𝑣𝑜𝑢𝑡
𝑅𝑜𝑢𝑡

+ 𝑠𝐶𝑑𝑏𝑣𝑜𝑢𝑡 (3.37)

Next, solving Equation 3.36 for 𝑣𝑔𝑠, substituting into Equation 3.37, and rearranging yields

𝑣𝑜𝑢𝑡
𝑣𝑠

=
−𝑔𝑚𝑅𝑜𝑢𝑡 (1 − 𝑠𝐶𝑔𝑑

𝑔𝑚
)

1 + 𝑏1𝑠 + 𝑏2𝑠2 (3.38)
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Figure 3.15.: Small-signal model of the common-source amplifier with both intrinsic and extrinsic
capacitances included. With (a) Thevénin equivalent input source configuration, and
(b) Norton equivalent input source configuration.
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where

𝑏1 = 𝑅𝑠 (𝐶𝑔𝑠 + 𝐶𝑔𝑑) + 𝑅𝑜𝑢𝑡 (𝐶𝑑𝑏 + 𝐶𝑔𝑑) + 𝑔𝑚𝑅𝑜𝑢𝑡𝑅𝑠𝐶𝑔𝑑 (3.39)

and

𝑏2 = 𝑅𝑠𝑅𝑜𝑢𝑡 (𝐶𝑔𝑠𝐶𝑔𝑑 + 𝐶𝑔𝑠𝐶𝑑𝑏 + 𝐶𝑔𝑑𝐶𝑑𝑏) (3.40)

Although this result is algebraically complex, we can make a few preliminary observations about
the terms in the numerator of Equation 3.38:

• At DC (𝑠 = 0, or all capacitors set to zero), the voltage gain of the circuit is –𝑔𝑚𝑅𝑜𝑢𝑡, as we
already concluded from the low-frequency analysis in Chapter 2.

• The numerator contains a right half plane zero, 𝑧1 = 𝑔𝑚/𝐶𝑔𝑑. Since obviously 𝐶𝑔𝑑 < 𝐶𝑔𝑠+𝐶𝑔𝑑,
we conclude [via comparison with Equation 3.35] that this zero occurs at frequencies beyond
𝜔𝑇 , and is therefore irrelevant in many practical scenarios.

The denominator of the transfer function is a second-order polynomial in 𝑠 with complicated
dependencies on all component values. All we can say at first glance from inspecting the denom-
inator is that we expect to see two poles in the frequency response of this circuit, because it can
(in principle) be factored into two binomial terms. Note that this factorization would yield an even
more complicated expression.

The main issue with a result of this complexity is that it cannot be understood intuitively.
Consequently, it is difficult to recognize the main parameters that are limiting the performance,
which in turn prevents the designer from identifying ways to optimize the circuit. Even though
Equation 3.38 is mathematically exact, we would rather like to work with an expression that
sacrifices some accuracy and/or detail in return for transparency and focus on the main effects that
limit the performance. In order to take steps in this direction, we begin by evaluating Equation 3.38
numerically, primarily to get a feel for the pole locations in a typical circuit.

Example 3-6: Magnitude Response of the Common-Source Amplifier

Evaluate and plot the steady-state magnitude response of Equation 3.38 numerically using the
following transistor parameters: 𝑔𝑚 = 1 𝑚𝑆, 𝐶𝑔𝑠 = 40.7 𝑓𝐹 , 𝐶𝑔𝑑 = 10 𝑓𝐹 and 𝐶𝑑𝑏 = 11.6 𝑓𝐹
(same as in Example 3-5). Assume 𝑅𝑜𝑢𝑡 = 5 𝑘Ω and 𝑅𝑠 = 50 𝑘Ω. For comparison, also plot the
magnitude response of Equation 3.18, i.e., considering only the intrinsic gate capacitance.

SOLUTION

The plots are generated by letting 𝑠 = 𝑗𝜔 in Equation 3.38 and Equation 3.18, and subsequently
plotting the magnitude of the expression as a function of frequency. The result is show in Figure 3.16.
From the plots, we conclude the following:

• In the response that uses intrinsic capacitance only, we see a pole at approximately 100 𝑀𝐻𝑧;
this number corresponds to the value obtained in Example 3-4.

• As expected, the response with both intrinsic and extrinsic capacitances exhibits two poles.
More importantly, we see that one of the poles occurs at relatively low frequencies, while the
other occurs at very high frequencies.
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3. Frequency Response of the Common-Source Voltage Amplifier

• The low-frequency pole of the case with extrinsic capacitance included lies significantly lower
than 100 𝑀𝐻𝑧. This tells us that extrinsic capacitance has a substantial impact on the
bandwidth of this circuit.

Figure 3.16.

From the result of this particular example, we see that the bandwidth of the common-source
amplifier is primarily set by a single pole that lies far from any other breakpoint in the response. In
this case, we call the bandwidth limiting pole of the circuit the dominant pole. When a dominant
pole condition exists, we would like to work with an expression of the form

𝑣𝑜𝑢𝑡
𝑣𝑠

= 𝐴𝑣0
1 − 𝑠

𝑝1

(3.41)

instead of evaluating Equation 3.38. In some sense, Equation 3.38 contains too much information
about irrelevant features of the response that have no impact on the 3-dB bandwidth. A commonly
used technique that allows us to simplify expressions of the form of Equation 3.38 is therefore
discussed in the next sub-section.

3.3.4. The Dominant Pole Approximation

In general, the denominator of the transfer function given in Equation 3.38 can be factored into
two binomial terms

(1 − 𝑠
𝑝1

) (1 − 𝑠
𝑝2

) = 1 − 𝑠 ( 1
𝑝1

+ 1
𝑝2

) + 𝑠2

𝑝1𝑝2
(3.42)
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Furthermore, we know from our numerical evaluation of the previous subsection that the magnitude
of one of the poles is much larger than the other, i.e

|𝑝2| ≫ |𝑝1| (3.43)

and therefore

|𝑝2| ≪ |𝑝1| (3.44)

Consequently, we can eliminate the second term in s on the right hand side of Equation 3.42 and
approximate

(1 − 𝑠
𝑝1

) (1 − 𝑠
𝑝2

) ≃ 1 − ( 𝑠
𝑝1

) + 𝑠2

𝑝1𝑝2
(3.45)

Now, comparing Equation 3.38 with Equation 3.45, we see that

− 1
𝑝1

= 𝑏1 (3.46)

and thus

𝑝1 = − 1
𝑏1

= − 1
𝑅𝑠[𝐶𝑔𝑠 + 𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] + 𝑔𝑚𝑅𝑜𝑢𝑡𝑅𝑠𝐶𝑔𝑑

= − 1
𝑅𝑠[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] (3.47)

This result gives us a relatively handy expression for the dominant pole in the common-source
amplifier, and the bandwidth can be estimated using

𝜔3𝑑𝐵 = 1
𝑅𝑠[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] (3.48)

As opposed to Equation 3.38, Equation 3.48 is much more useful for evaluating which particular
component of the circuit may limit the bandwidth. Specifically, the term (1+𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑 looks like a
potential problem. Whenever 𝑔𝑚𝑅𝑜𝑢𝑡 is large (high gain), this term may dominate the denominator
of Equation 3.48, and therefore limit the bandwidth. This is a very important conclusion, but
unfortunately took us many lines of algebra (including the derivation of Equation 3.38, which was
not shown in detail) to develop. A more desirable approach would hint with very little algebra that
the aforementioned term may limit the bandwidth. Such an approach is possible via the application
of the Miller theorem and the Miller approximation, discussed in the next subsection.

115
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3.3.5. The Miller Theorem and the Miller Approximation

The Miller theorem is a general linear circuit theorem that can be used to replace an impedance
connected between two circuit nodes by two impedances, connected from each terminal to ground.
This is illustrated in Figure 3.17. The impedance 𝑍 in Figure 3.17(a) is replaced by the two
impedances 𝑍1 and 𝑍2 in Figure 3.17(b). For the two circuits to be equivalent, it can be shown
that

𝑍1 = 𝑍
1 − 𝐴𝑣𝑀

𝑎𝑛𝑑 𝑍2 = 𝐴𝑣𝑀𝑍
𝐴𝑣𝑀 − 1 (3.49)

where 𝐴𝑣𝑀 = 𝑉2/𝑉1 is the voltage gain across the impedance 𝑍, also called the Miller gain.

Figure 3.17.: Illustration of the Miller theorem.

The Miller theorem is useful for the simplification of a variety of circuits. In the context of the
common-source amplifier analysis in this chapter, we will use the theorem to eliminate the coupling
of the output and input through 𝐶𝑔𝑑, and thereby arrive at a circuit that is easier to analyze
and understand. Before applying the Miller Theorem to the full circuit model of Figure 3.15, we
will first consider its application to an ideal voltage amplifier circuit with a coupling capacitance
between the input and output, as drawn in Figure 3.18.

The goal of this example is to determine the effective shunt capacitance at the input port, when
the signal is amplified by a gain of 𝐴𝑣𝑀 across the coupling capacitor 𝐶. Using 𝑍 = 1/𝑠𝐶, and
𝑍𝑒𝑓𝑓 = 1/𝑠𝐶𝑒𝑓𝑓 we can apply Equation 3.49 to find

1
𝑠𝐶𝑒𝑓𝑓

=
1

𝑠𝐶
1 − 𝐴𝑣𝑀

(3.50)

and therefore

𝐶𝑒𝑓𝑓 = 𝐶(1 − 𝐴𝑣𝑀) (3.51)
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Figure 3.18.: Idealized voltage amplifier with coupling capacitance between its input and output.

If the voltage gain 𝐴𝑣𝑀 is a negative number (as in the case of a common-source amplifier), the
capacitance 𝐶 is “amplified” by the factor (1 + |𝐴𝑣𝑀 |). Intuitively, without relying on a complete
proof of the Miller Theorem, this result can be understood by examining the voltages and currents
of the capacitor 𝐶 in Figure 3.18. The voltage across 𝐶 is

𝑣𝐶 = 𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡 = 𝑣𝑖𝑛(1 − 𝐴𝑣𝑀) (3.52)

and the current flowing into 𝐶 from the input port is

𝑖𝑖𝑛 = 𝑖𝐶 = 𝑠𝐶𝑣𝑐 = 𝑠𝐶(1 − 𝐴𝑣𝑀)𝑣𝑖𝑛

𝑣𝑖𝑛
𝑣𝑜𝑢𝑡

= 1
𝑠𝐶(1 − 𝐴𝑣𝑀) = 1

𝑠𝐶𝑒𝑓𝑓
(3.53)

In essence, the capacitance is multiplied due to the large swing at the amplifier output; this increases
the voltage across the capacitor and therefore forces a correspondingly multiplied current into the
input port.

This result applies qualitatively also to the common-source amplifier studied in this chapter—
i.e., the negative gain of the amplifier causes an amplification of 𝐶𝑔𝑑, which couples the input and
output. However, a subtle difference is that the gain across the capacitor is not perfectly constant
(as assumed above), but exhibits some frequency dependence.

To investigate, consider the circuit of Figure 3.19, which is the relevant section of the full common-
source circuit needed to find the voltage gain across 𝐶𝑔𝑑. Applying KCL at node 2 and solving for
𝐴𝑣𝑀 = 𝑣𝑜𝑢𝑡/𝑣𝑔𝑠 yields

𝑣𝑜𝑢𝑡
𝑣𝑔𝑠

= −𝑔𝑚𝑅𝑜𝑢𝑡 ⎛⎜
⎝

1 − 𝑠𝐶𝑔𝑑
𝑔𝑚

1 + 𝑠𝑅𝑜𝑢𝑡(𝐶𝑑𝑏 + 𝐶𝑔𝑑)
⎞⎟
⎠

(3.54)
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3. Frequency Response of the Common-Source Voltage Amplifier

Figure 3.19.: Circuit to analyze the voltage gain across 𝐶𝑔𝑑.

In this expression, the bracketed term contains a zero and a pole. The zero occurs beyond 𝜔𝑇 and
can be safely discarded. The situation is somewhat different for the pole. If 𝑅𝑜𝑢𝑡 is very large,
or if an additional load capacitance is added to the circuit output (in parallel with 𝐶𝑑𝑏), the pole
can occur at relatively low frequencies, making the gain across 𝐶𝑔𝑑 non-constant in the frequency
range of interest. Provided that the pole in the bracketed term occurs outside the frequency band
of interest, we can assume

𝑣𝑜𝑢𝑡
𝑣𝑔𝑠 ≃ −𝑔𝑚𝑅𝑜𝑢𝑡 (3.55)

This assumption is known as the Miller approximation, and it allows us to utilize the result from
Equation 3.51, which assumed a constant gain across the capacitor in question.

To complete this discussion, we will now apply the Miller approximation to the model of the
common-source amplifier in Figure 3.15. The result is shown in Figure 3.20. The capacitor 𝐶𝑔𝑑 is
no longer connected between the input and output, but appears only across the input port, with its
value multiplied by (1 + 𝑔𝑚𝑅𝑜𝑢𝑡). From this model, the circuit bandwidth can be easily identified
by inspection

𝜔3𝑑𝐵 = 1
𝑅𝑠[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] (3.56)
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3.3. Frequency Response of the Common-Source Voltage Amplifier— Second-Pass Analysis

Figure 3.20.: Small-signal model of the common-source amplifier after applying the Miller approxi-
mation.

In comparison with Equation 3.48, this result is missing the term 𝑅𝑜𝑢𝑡(𝐶𝑔𝑑 + 𝐶𝑑𝑏) in the denom-
inator. This is not surprising and also inconsequential when the Miller Approximation is applied
properly. As we pointed out above, the Miller approximation is justified only when this time con-
stant is small in the first place, ensuring a constant Miller gain in the band where the dominant
pole is expected to lie. Whenever the Miller approximation is applied, it must be verified that
the neglected pole in the Miller gain occurs far beyond the frequency estimated by Equation 3.56.
This leads to the following procedure for the proper application of the Miller approximation in
common-source amplifiers:

1. Calculate the low-frequency gain across 𝐶𝑔𝑑 and draw the simplified circuit model (as in
Figure 3.20) with the Miller-amplified shunt capacitance at the input.

2. Estimate the bandwidth of the circuit using Equation 3.56.

3. Calculate the frequency of the pole in Equation 3.54. If and only if this pole frequency is far
beyond the frequency calculated in step 2, the Miller approximation result is valid.

In a typical common-source circuit without a large load capacitance as drawn in Figure 3.20, the
Miller approximation typically holds. When a very large capacitor is connected to the output, the
approximation becomes invalid and the dominant pole is set by the 𝑅𝐶 time constant formed at
the output.

Example 3-7: Calculating the Common-Source Amplifier Bandwidth Using the Miller
Approximation

Calculate the 3-dB bandwidth for the common-source voltage amplifier of Figure 3.15 using (a) the
Miller approximation, and (b) the dominant pole approximation result of Equation 3.48. Param-
eters: 𝑔𝑚 = 1 𝑚𝑆, 𝐶𝑔𝑠 = 40.7 𝑓𝐹 , 𝐶𝑔𝑑 = 10 𝑓𝐹 , 𝐶𝑑𝑏 = 11.6 𝑓𝐹 , 𝑅𝑜𝑢𝑡 = 5 𝑘Ω and 𝑅𝑠 = 50 𝑘Ω
(same as in Example 3-6). Calculate the percent error in the result of part (a).

SOLUTION
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a. Using the Miller approximation [i.e., Equation 3.56], we obtain

𝑓3𝑑𝐵 = 1
2𝜋 ⋅ 1

𝑅𝑠[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑]

= 1
2𝜋 ⋅ 1

50𝑘Ω[40.7𝑓𝐹 + (1 + 1𝑚𝑆 ⋅ 5𝑘Ω)10𝑓𝐹 ]
= 31.61𝑀𝐻𝑧

b. Using Equation 3.48 we find

𝑓3𝑑𝐵 = 1
2𝜋 ⋅ 1

𝑅𝑠[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑]

= 1
2𝜋 ⋅ 1

50𝑘Ω[40.7𝑓𝐹 + (1 + 1𝑚𝑆 ⋅ 5𝑘Ω)10𝑓𝐹 ] + 5𝑘Ω ⋅ 21.6𝑓𝐹
= 30.95𝑀𝐻𝑧

The error in the result of part (a) is therefore

31.61 − 30.95
30.95 = 2.1%

The error of 2.1% seen in this example is acceptable and will in practice be overshadowed by
uncertainty in the transistor model parameters.

3.3.6. Calculating the Non-Dominant Pole*

The reader may wonder how the non-dominant pole frequency can be calculated within the above-
discussed framework. A common misconception is to assume that after applying the Miller approx-
imation, the non-dominant pole can be simply found from the time constant in the output network,
i.e., 𝑅𝑜𝑢𝑡𝐶𝑑𝑏. This is incorrect, since the Miller approximation is not valid at the frequency where
the non-dominant pole is located.

If a dominant pole condition exists, the proper way to estimate the non-dominant pole is by
comparing the coefficients of Eqs. (3.45) and (3.38). Specifically, we utilize that

1
𝑝1𝑝2

= 𝑏2 (3.57)

and thus

𝑝2 = 1
𝑝1𝑏2

= −𝑅𝑠[𝐶𝑔𝑠 + 𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] + 𝑔𝑚𝑅𝑜𝑢𝑡𝑅𝑠𝐶𝑔𝑑
𝑅𝑠𝑅𝑜𝑢𝑡(𝐶𝑔𝑠𝐶𝑔𝑑 + 𝐶𝑔𝑠𝐶𝑑𝑏 + 𝐶𝑔𝑑𝐶𝑑𝑏)

(3.58)
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To simplify, let us assume that 𝐶𝑔𝑑 ≪ 𝐶𝑔𝑠 and 𝐶𝑔𝑑 ≪ 𝐶𝑑𝑏. Note that the latter assumption is not
strictly true based on typical values for the technology assumed in this module (see Example 3-5).
However, if a load capacitance is added to the circuit, the approximation is more easily justified,
with Cdb replaced by 𝐶𝑑𝑏 + 𝐶𝐿 (see Example 3-8), and we almost always have in practice 𝐶𝑔𝑑 ≪
𝐶𝑑𝑏 + 𝐶𝐿. Thus, under the stated conditions, we can write

𝑝2 ≃ −𝑅𝑠𝐶𝑔𝑠 + 𝑅𝑜𝑢𝑡𝐶𝑑𝑏 + 𝑔𝑚𝑅𝑜𝑢𝑡𝑅𝑠𝐶𝑔𝑑
𝑅𝑠𝑅𝑜𝑢𝑡𝐶𝑔𝑠𝐶𝑑𝑏

= − ( 1
𝑅𝑜𝑢𝑡𝐶𝑑𝑏

+ 1
𝑅𝑠𝐶𝑔𝑠

+ 𝑔𝑚
𝐶𝑑𝑏

⋅ 𝐶𝑔𝑑
𝐶𝑔𝑠

) (3.59)

This approximate result indicates that the non-dominant pole lies at a frequency that is higher
than 1/𝑅𝑜𝑢𝑡𝐶𝑑𝑏, especially when 𝑔𝑚 is large. Note that Equation 3.59 essentially represents a
“parallel combination” of time constants (analogous to parallel connections of resistors)—that is,
the smallest time constant in the expression sets the pole frequency.

3.4. Open-Circuit Time Constant Analysis

3.4.1. General Framework

In Section 3-3-4, we derived an approximate expression for the 3-dB bandwidth of a common-source
voltage amplifier, assuming that a dominant pole condition exists. In this analysis, we found that
the bandwidth is fully determined by the coefficient 𝑏1 in the numerator of Equation 3.38.

The open-circuit time constant (OCT) analysis is a powerful and general technique that
allows us to compute the term 𝑏1 for arbitrary circuits, without the need to derive the full circuit
transfer function with all high-order artifacts included. More importantly, it breaks the analysis
into small and computationally manageable steps that provide insight about which circuit elements
present the main bandwidth bottleneck. The step-by-step procedure for applying the OCT analysis
method can be summarized as follows (see Reference 3 for a derivation)

1. Remove all but one capacitor in the circuit that is to be analyzed. Let us call this capacitor
𝐶𝑗.

2. Short all independent voltage sources and remove all independent current sources in the
circuit.

3. Calculate the Thévenin resistance 𝑅𝑇 𝑗 seen by the capacitor 𝐶𝑗 and compute the time constant
𝜏𝑗0 = 𝑅𝑇 𝑗𝐶𝑗. Here, the subscript “𝑜” is used to emphasize the open-circuit condition.

4. Repeat the above steps 1-3 for all remaining capacitors in the circuit.

5. The sum of all time constants is exactly equal to 𝑏1. We can therefore estimate the circuit’s
3-dB bandwidth using
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𝜔3𝑑𝐵 ≃ 1
𝑏1

(3.60)

𝑏1 =
𝑁

∑
𝑗=1

𝜏𝑗𝑜 (3.61)

where 𝑁 is the total number of capacitors in the circuit. The 𝜏𝑗𝑜 jo are called open-circuit time
constants, because these were determined with all other capacitors open circuited.

Once a circuit is analyzed using the OCT method, we can see which of the individual open-circuit
time constants is contributing most heavily to 𝑏1. To increase the bandwidth, we can try to redesign
the circuit by lowering the Thévenin resistance or the capacitor value of that time constant.

3.4.2. OCT Analysis of a Common-Source Stage

Consider the common-source amplifier shown in Figure 3.21(a) as an example to further understand
the method of open-circuit time constants. We begin by considering 𝐶𝑔𝑠 and therefore remove all
other capacitors and short the input source as shown in Figure 3.21(b). As evident from this circuit,
the Thévenin resistance seen by capacitor 𝐶𝑔𝑠 is 𝑅𝑆 and the individual time constant contribution
from 𝐶𝑔𝑠 is

𝜏𝑔𝑠𝑜 = 𝑅𝑆𝐶𝑔𝑠 (3.62)

Similarly, redrawing the circuit with only Cdb present will yield

𝜏𝑑𝑏𝑜 = 𝑅𝑜𝑢𝑡𝐶𝑑𝑏 (3.63)

Next, we determine the individual time constant contribution from capacitor 𝐶𝑔𝑑. To perform this
calculation, we consider the circuit as redrawn in Figure 3.21(c). From this circuit, the Thévenin
resistance seen across 𝐶𝑔𝑑 cannot be immediately determined by inspection. This is because of
the 𝑔𝑚 element, which couples the nodes to the left and right of the capacitance. We therefore
resort to determining the Thévenin resistance from first principles, using a nodal analysis. As
shown in Figure 3.22, we apply a test current source (𝑖𝑡) and measure the resulting test voltage
(𝑣𝑡). Applying 𝐾𝑉 𝐿 and 𝐾𝐶𝐿, we find that

𝑣𝑡 = 𝑣𝑔𝑠 + 𝑅𝑜𝑢𝑡(𝑔𝑚𝑉𝑔𝑠 + 𝑖𝑡) (3.64)

𝑣𝑔𝑠 = 𝑖𝑡𝑅𝑆 (3.65)

After substituting Equation 3.65 into Equation 3.64, we obtain

𝑅𝑇 𝑔𝑑 = 𝑣𝑡
𝑖𝑡

= 𝑅𝑆 + 𝑅𝑜𝑢𝑡(𝑔𝑚𝑅𝑆 + 1)
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Figure 3.21.: OCT analysis for a common-source amplifier. (a) Complete circuit. (b) Circuit for
finding 𝜏𝑔𝑠. (c) Circuit for finding 𝜏𝑔𝑑.
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= 𝑅𝑆 + 𝑅𝑜𝑢𝑡 + 𝑔𝑚𝑅𝑆𝑅𝑜𝑢𝑡 (3.66)

Figure 3.22.: Circuit to determine the Thévenin resistance seen across 𝐶𝑔𝑑.

A common way to memorize this final result is “𝑅𝑙𝑒𝑓𝑡 + 𝑅𝑟𝑖𝑔ℎ𝑡 + 𝑔𝑚𝑅𝑙𝑒𝑓𝑡𝑅𝑟𝑖𝑔ℎ𝑡,” where 𝑅𝑙𝑒𝑓𝑡 and
𝑅𝑟𝑖𝑔ℎ𝑡 are the resistances seen to the left and right of the coupling capacitance 𝐶𝑔𝑑, respectively.
Using this result, the individual time constant resulting from 𝐶𝑔𝑑 is given by

𝜏𝑔𝑑𝑜 = 𝑅𝑇 𝑔𝑑𝐶𝑔𝑑 = [𝑅𝑆 + 𝑅𝑜𝑢𝑡 + 𝑔𝑚𝑅𝑆𝑅𝑜𝑢𝑡]𝐶𝑔𝑑 (3.67)

Next, we add the individual time constants from Equation 3.62, Equation 3.63, and Equation 3.67,
which results in

𝑏1 = 𝑅𝑆[𝐶𝑔𝑠 + 𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] + 𝑔𝑚𝑅𝑜𝑢𝑡𝑅𝑆𝐶𝑔𝑑

= 𝑅𝑆[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] (3.68)

Note that this result is identical to Equation 3.39, which was obtained from an exact nodal analysis
of the complete circuit. This verifies that the method of open-circuit time constants is an exact
analysis to determine the factor 𝑏1, which multiplies the first-order term in 𝑠 in the denominator of
the generalized system function. As before, the resulting estimate of the 3-dB breakpoint frequency
is therefore given by

𝜔3𝑑𝐵 = 1
𝑏1

= 1
𝑅𝑆[𝐶𝑔𝑠 + (1 + 𝑔𝑚𝑅𝑜𝑢𝑡)𝐶𝑔𝑑] + 𝑅𝑜𝑢𝑡[𝐶𝑑𝑏 + 𝐶𝑔𝑑] (3.69)
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It is important to remember that this result maintains good accuracy only if a dominant pole con-
dition exists. As we showed in Section 3-3-4, this condition is required so that we can approximate
𝜔3𝑑𝐵 ≃ 1/𝑏1. Finally it is worth noting that Equation 3.69 shows that 𝐶𝑔𝑑 is effectively multiplied
by the circuit’s voltage gain; this corresponds to the Miller amplification effect discussed in the
previous section.

A simple example where the dominant pole condition is not met is shown in Figure 3.23. The
reader may prove that the exact transfer function of this circuit is

𝑣𝑜𝑢𝑡
𝑣𝑠

= −𝑔𝑚𝑅
(1 + 𝑠𝑅𝐶)(1 + 𝑠𝑅𝐶) (3.70)

and thus

|𝑝2| = |𝑝1| = 1
𝑅𝐶 (3.71)

Figure 3.23.: Circuit example that violates the dominant pole assumption.

Therefore, we expect that the approximation of Equation 3.45 cannot be applied and 1/𝑏1 will not
be a good estimate for the circuit’s bandwidth. It is now interesting to calculate the error that will
result if the OCT method is nonetheless “blindly” applied.

In performing the OCT analysis, we see that the circuit in question has two open-circuit time
constants equal to 𝑅𝐶. The bandwidth estimate using OCT analysis is therefore

𝜔3𝑑𝐵,𝑂𝐶𝑇 ≃ 1
𝑏1

= 1
2𝑅𝐶 (3.72)

On the other hand, we can find the exact 3-dB frequency of the circuit using

1√
2

= ∣ 1
(1 + 𝑗𝜔3𝑑𝐵𝑅𝐶)(1 + 𝑗𝜔3𝑑𝐵𝑅𝐶)∣ (3.73)
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Solving for 𝜔3𝑑𝐵 gives

𝜔3𝑑𝐵 = 1
𝑅𝐶

√√
2 − 1 ≃ 0.64

𝑅𝐶 (3.74)

The error in the OCT estimate is thus

0.5 − 0.64
0.64 = −22% (3.75)

From this result, we can draw a few interesting conclusions. First, even though the dominant pole
condition is grossly violated in the above example, the OCT analysis is not extremely far off from
the exact result. Second, the OCT result is conservative in the sense that it tends to underestimate
the circuit’s bandwidth. This is desirable since the designer can rest assured that the bandwidth
is at least as large as predicted by the OCT analysis. It can be shown that this latter property
holds for arbitrary circuits whose poles lie on (or near) the real axis, and whose zeros occur beyond
the estimated 𝜔3𝑑𝐵. This is the case for most circuits considered in this module. We will highlight
exceptions where appropriate.

In summary, the reader should remember the following key points when applying the OCT
analysis:

• In any circuit, the sum of the open-circuit time constants corresponds (exactly) to the term
𝑏1, which multiplies the first-order term in the denominator of the circuit’s 𝑠-domain transfer
function.

• Under the following conditions, the bandwidth of the circuit can be approximated with good
accuracy by 1/𝑏1: (1) a dominant pole condition exists, (2) the transfer function contains
only poles that lie on (or near) the real axis, and (3) the zeros in the transfer function occur
beyond the bandwidth estimate in question.

• Even if no clear dominant pole condition exists, OCTs can be used to get a first-order feel
for the bandwidth of a circuit. For instance, in a circuit with two identical real poles, the
OCT bandwidth estimate is in error by –22%. As long as condition (2) above is met, the
percent error will be negative and thus the estimated bandwidth is at least as large as the
actual bandwidth (measured, e.g., using a circuit simulation).

• Open-circuit time constants, in general, do not necessarily correspond to the poles of a circuit.
The OCT correspond to poles only in circuits that can be broken into decoupled 𝑅𝐶 sections,
as is the case in the circuit of Figure 3.23.

Example 3-8 Common-Source Amplifier Bandwidth Estimate Using an OCT Analy-
sis

Consider the circuit shown in Figure 3.24 and assume the following parameters: 𝑊 = 20 𝜇𝑚, 𝐿 =
1 𝜇𝑚, 𝐼𝐵 = 500 𝜇𝐴, 𝑔𝑚 = 1 𝑚𝑆, 𝐶𝑔𝑠 = 40.7 𝑓𝐹 , 𝐶𝑔𝑑 = 10 𝑓𝐹 , 𝐶𝑑𝑏 = 11.6 𝑓𝐹 , 𝑅𝑜𝑢𝑡 = 𝑅𝐷 ∥ 𝑟𝑜 =
5 𝑘Ω and 𝑅𝑠 = 50 𝑘Ω (same as in Example 3-7). The value of the load capacitance is 𝐶𝐿 = 10 𝑝𝐹 .
Estimate the 3-dB bandwidth using an OCT analysis and propose a design modification that will
increase the bandwidth by 20%. For this modification, you may not alter the circuit’s DC gain,
and 𝑅𝑆 and 𝐶𝐿 must be kept constant.
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Figure 3.24.
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SOLUTION

The circuit has three open-circuit time constants as expressed in Equation 3.62, Equation 3.63, and
Equation 3.67, with the difference that 𝐶𝐿 appears in parallel to 𝐶𝑑𝑏. The three OCT expressions
are therefore

𝜏𝑔𝑠𝑜 = 𝑅𝑆𝐶𝑔𝑠

𝜏 ′
𝑑𝑏𝑜 = 𝑅𝑜𝑢𝑡(𝐶𝑑𝑏 + 𝐶𝐿)

𝜏𝑔𝑑𝑜 = 𝑅𝑇 𝑔𝑑𝐶𝑔𝑑 = [𝑅𝑆 + 𝑅𝑜𝑢𝑡 + 𝑔𝑚𝑅𝑆𝑅𝑜𝑢𝑡]𝐶𝑔𝑑

Evaluating these expression with the given numbers yields

𝜏𝑔𝑠𝑜 = 50𝑘Ω ⋅ 40.7𝑓𝐹 = 2.035𝑛𝑠

𝜏 ′
𝑑𝑏𝑜 = 5𝑘Ω(11.6𝑝𝐹 + 10𝑝𝐹) = 50.01𝑛𝑠

𝜏𝑔𝑑𝑜 = [50𝑘Ω + 5𝑘Ω + 1𝑚𝑆 ⋅ 5𝑘Ω ⋅ 50𝑘Ω]10𝑓𝐹

= 3.05𝑛𝑠

The bandwidth estimate is

𝑓3𝑑𝐵 = 1
2𝜋 ⋅ 1

2.035𝑛𝑠 + 50.01𝑛𝑠 + 3.05𝑛𝑠 = 2.89𝑀𝐻𝑧

In order to improve the bandwidth by 20%, it is clear that we must reduce the dominant open-
circuit time constant 𝜏 ′

𝑑𝑏𝑜. Since 𝐶𝐿 must remain unchanged, the only option is to reduce Rout.
To first-order, reducing Rout to approximately 4 𝑘Ω (a 20% reduction from the original value of 5
𝑘Ω) should get us close to the desired improvement. In order to keep the DC gain of the circuit
constant, we now require a larger transconductance

𝑔𝑚 = 𝐴𝑣0
𝑅𝑜𝑢𝑡

= 5
4𝑘Ω = 1.2𝑚𝑆

There are several ways to increase the transconductance of the MOSFET. (i) Keep the device
width constant and increase the bias current 𝐼𝐷. An advantage of this option is that none of the
device capacitances will change, thereby avoiding any counterproductive increase in the total time
constant.(ii) Keep 𝐼𝐷 constant and increase the device width 𝑊 . This option has the advantage
that the current consumption of the circuit will not increase. Finally, option (iii) is to increase
both 𝑊 and 𝐼𝐷 by the same factor. This option has the advantage that the gate overdrive voltage
𝑉𝑂𝑉 remains unchanged, and hence the input bias voltage and output voltage swing are unaffected.
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Since our primary focus in this example is to improve bandwidth, and current consumption and
biasing considerations are secondary, we will apply option (i).

Using Equation 2.30, the new value of the required 𝐼𝐵 is

𝐼𝐵 = 𝐼𝐷 = 𝑔2
𝑚

2𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿

= (1.2𝑚𝑆)2

2 ⋅ 50𝜇𝐴
𝑉 2 ⋅ 20

1
= 720𝜇𝐴

Note that this value is approximately 44% larger than the original bias current of 500 𝜇𝐴.

As a final verification step, we recompute the bandwidth estimate using the new value of Rout. The
time constant 𝜏𝑔𝑠𝑜 remains the same, while the change in 𝜏𝑔𝑑𝑜 is negligible. The dominant OCT
modifies as follows

𝜏 ′
𝑑𝑏𝑜 = 4𝑘Ω(11.6𝑓𝐹 + 10𝑝𝐹) = 40.05𝑛𝑠

The modified bandwidth estimate is therefore

𝑓3𝑑𝐵 = 1
2𝜋 ⋅ 1

2.035𝑛𝑠 + 40.05𝑛𝑠 + 3.05𝑛𝑠 = 3.53𝑀𝐻𝑧

which is about 22% larger than the original bandwidth, satisfying our design intent.

3.4.3. OCT Extensions

The OCT analysis covered in this section is tailored toward finding the upper corner frequency in
circuits that are limited by capacitive elements; this is the most common situation encountered in
integrated circuit design. For completeness, it is worth mentioning that there exists a method of
short-circuit time constants (see Reference 3), which aims at estimating the lower corner frequency
of a circuit with a high-pass characteristic. This is useful for circuits that employ AC coupling of
various forms.

In circuits that contain inductors, the additional time constants can be included by shorting all
but one inductor at a time. The generalized framework that includes the consideration of both
inductors and capacitors to estimate the upper corner frequency of a circuit is called zero-value
time constant analysis. Finally, it is interesting to note that higher-order terms [such as 𝑏2
in Equation 3.40] can be found using an OCT-like analysis. The interested reader is referred to
Reference 4 for a comprehensive discussion of such methods.
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3.4.4. Time Constants versus Poles

The distinction between open-circuit time constants and poles tends to be a source of confusion
among circuit design students. We will therefore review the differences in this section using two
examples.

Consider first the circuit of Figure 3.23. As we have shown above, this circuit has two open-
circuit time constants, equal to 𝑅𝐶. Also we found that this circuit has two poles, located at –1/𝑅𝐶.
Thus, in this particular circuit, the poles coincide with the (reciprocals of the) time constants. The
reason for this coincidence is that the two networks at the input and output are fully decoupled
and represent simple first order 𝑅𝐶 sections. For such a topology, the circuit designer sometimes
loosely speaks of a “pole at the input” and “pole at the output,” which are directly set by the time
constants of each network.

Consider now the circuit of Figure 3.25, which is the same as Figure 3.23, except that we have
added an additional capacitor 𝐶 between the input and output terminal. This circuit retains the
two open-circuit time constants of the original circuit (equal to 𝑅𝐶), but has an additional one
due to the added capacitor, equal to 𝑅𝐶(2 + 𝑔𝑚𝑅). On the other hand, the poles of this circuit
can no longer be found by inspection. The transfer function has the form of Equation 3.38, with
𝑏1 = 𝑅𝐶(4 + 𝑔𝑚𝑅) and 𝑏2 = 3(𝑅𝐶)2. The two poles of the circuit are the roots of the denominator
polynomial 1 + 𝑏1𝑠 + 𝑏2𝑠2 = 0 and their value depends on the value of 𝑔𝑚𝑅. Assuming 𝑔𝑚𝑅 = 2 as
a numerical example, the roots, and therefore the poles become

𝑝1,2 = − 1
𝑅𝐶 (1 ± √2

3) (3.76)

Figure 3.25.: Circuit example with three open-circuit time constants.

As we can see from this result, the poles do not coincide with any of the open-circuit time constants.
More significantly, the number of poles (two) is not even equal to the number of open-circuit time
constants (three).
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As we can see from this result, the poles do not coincide with any of the open-circuit time constants.
More significantly, the number of poles (two) is not even equal to the number of open-circuit time
constants (three).

Finally, to fully close the loop between the two analysis techniques, note that the magnitude
of the low-frequency pole in Equation 3.76 is approximately equal to 0.18/𝑅𝐶. This is close
to the 3-dB bandwidth predicted by the sum of the open-circuit time constants (for 𝑔𝑚𝑅 = 2):
1/(4𝑅𝐶 + 𝑅𝐶 + 𝑅𝐶) = 0.167/𝑅𝐶, which, as expected, is slightly conservative.

3.5. High-Frequency Two-Port Model for the Common-Source Voltage
Amplifier

To summarize, Figure 3.26 shows the most general two-port model for the common-source voltage
amplifier [similar to Figure 3.15] with source and load networks included. The advantage of this
model representation is that it is valid for arbitrary component values. The disadvantage is that
analyzing a circuit based on this model leads to complex equations. Generally, one should use this
model as the starting point for the analysis of more complex circuits that contain a CS amplifier (see
Chapter 6). Then, whenever suitable, we can invoke simplifications such as the Miller approximation
or open-circuit time constants to simplify the analysis.

Finally, note that the model of Figure 3.26 is not well suited for a translation into a native voltage
amplifier model (using a voltage controlled voltage source) as done for the low-frequency circuit in
Section 2-4. The capacitors connected to the output port would lead to a frequency-dependent open-
circuit gain and output impedance (𝑍𝑜𝑢𝑡 rather than 𝑅𝑜𝑢𝑡) that give a non-intuitive representation
of the circuit. It is therefore preferred to describe this voltage amplifier using the transconductance
model as shown.

Figure 3.26.: General two-port model for the common-source voltage amplifier valid at high fre-
quencies.

3.6. Summary

In this chapter we have reviewed the basic concepts of frequency domain analysis and introduced the
intrinsic and extrinsic device capacitances of a MOSFET. Using the obtained small-signal model,
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the frequency response of any circuit can be obtained from first principles using the following
steps:

1. Derive the transfer function using a nodal analysis.

2. Let and solve for the magnitude of the 𝑠 = 𝑗𝜔 resulting expression.

3. Set the magnitude equal to 1/
√

2 times the DC gain value, and solve for 𝜔.

Unfortunately, this method is algebraically too complex for all but the most basic circuits. Conse-
quently, we introduced several approximate methods and tools that are frequently used by analog
circuit designers. These methods were developed using our driving example of a common-source
voltage amplifier, but are widely used in other situations as well

• Provided that an exact (and potentially complicated) transfer function expression is available,
the dominant pole approximation can be applied to arrive at a simplified bandwidth expres-
sion. In this approximation, it is assumed that a single pole dominates the response and sets
the circuit’s 3-dB bandwidth.

• The Miller approximation was used to obtain a quick estimate of the 3 -dB bandwidth specif-
ically for the common-source voltage amplifier. Although it is not an exact calculation, it is
very useful for determining an estimate of the bandwidth of the amplifier analytically. Fur-
thermore, this analysis gave insight into the effect of “Miller-multiplication” of a capacitor
that appears across a voltage gain path. This effect is found in a multitude of circuits, and
understanding this mechanism is insightful for design.

• The method of open-circuit time constants is the most powerful and most broadly applicable
technique discussed in this chapter. It provides an accurate answer for the circuit’s bandwidth
if a dominant pole condition exists. Even if the dominant pole condition is not strictly met,
the method yields acceptable errors (on the conservative side) on the order of a few tens of
percent, which is often acceptable in a first-order hand analysis. Finally, the method of open-
circuit time constants is an excellent design tool since it assists in finding which capacitors
and Thévenin resistances are dominating the dynamic performance.
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3.8. Problems

Unless otherwise stated, use the standard model parameters specified in Table 3-1 for the problems
given below. Consider only first-order MOSFET behavior and include channel-length modulation
(as well as any other second-order effects) only where explicitly stated.

P3.1 Sketch the Bode plots (magnitude and phase) for the following transfer functions. Assume
𝑅𝑖𝐶𝑖 ≫ 𝑅𝑘𝐶𝑘 if 𝑖 > 𝑘.

a. [1/(1 + 𝑗𝜔𝑅1𝐶1)][(1/(1 + 𝑗𝜔𝑅2𝐶2))]
b. (𝑗𝜔𝑅3𝐶3)[(1 + 𝑗𝜔𝑅4𝐶4)/(1 + 𝑗𝜔𝑅5𝐶5)]
c. [(1 + 𝑗𝜔𝑅6𝐶6)/(1 + 𝑗𝜔𝑅8𝐶8)][(1 + 𝑗𝜔𝑅7𝐶7)/(1 + 𝑗𝜔𝑅9𝐶9)]

P3.2 A system has a DC gain of 500, LHP zeros at 10 𝑘𝐻𝑧 and 1 𝑀𝐻𝑧 and LHP poles at 100
𝑘𝐻𝑧, 10 𝑀𝐻𝑧, and 100 𝑀𝐻𝑧.

a. Write the 𝑠-domain transfer function that describes this system.

b. Draw a Bode plot for both the magnitude and phase of this system.

c. Switch the poles and zeros and repeat parts (a) and (b).

P3.3 Sketch the Bode plot for the magnitude, |𝐼𝑜/𝐼𝑠|𝑑𝐵 and phase ∠𝐼𝑜/𝐼𝑠 of the circuit shown in
Figure 3.27, given

a. 𝑅1 = 10 𝑘Ω, 𝑅2 = 100 𝑘Ω, 𝐶 = 1 𝑝𝐹
b. 𝑅1 = 0.1 𝑘Ω, 𝑅2 = 100 𝑘Ω, 𝐶 = 1 𝑝𝐹
c. 𝑅1 = 10 𝑘Ω, 𝑅2 = 100 𝑘Ω, 𝐶 = 10 𝑝𝐹

Figure 3.27.
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P3.4 Repeat Example 3-5 for the following parameters (assuming 𝑉𝐷𝑆 = 2.5 𝑉 ). For each case,
compute by which factor the transistor’s transit frequency has changed relative to the value seen
in Example 3-5.

a. 𝐼𝐷 = 500 𝜇𝐴, 𝐿 = 2 𝜇𝑚, and 𝑊 = 20 𝜇𝑚.
b. 𝐼𝐷 = 500 𝜇𝐴, 𝐿 = 1 𝜇𝑚, and 𝑊 = 40 𝜇𝑚.
c. 𝐼𝐷 = 1000 𝜇𝐴, 𝐿 = 1 𝜇𝑚, and 𝑊 = 40 𝜇𝑚.

P3.5 Repeat Example 3-5 for a p-channel MOSFET operating in saturation. Parameters: 𝑉𝑆𝐷 =
2.5 𝑉 , –𝐼𝐷 = 500 𝜇𝐴, 𝐿 = 1 𝜇𝑚, and 𝑊 = 20 𝜇𝑚. Compute the ratio of the transit frequency
obtained in Example 3-5 and the value obtained for the p-channel device analyzed in this prob-
lem. What is the main parameter that is responsible for the lower 𝑓𝑇 observed for the p-channel
MOSFET?

P3.6 Calculate the drain-bulk capacitance of a 100 𝜇𝑚 wide n-channel transistor for 𝑉𝐷𝐵 = 2.5 𝑉 .
Repeat the analysis for 𝑉𝐷𝐵 = 1 𝑉 and 𝑉𝐷𝐵 = 4 𝑉 and quantify by which factor the capacitance
changes relative to the case of 𝑉𝐷𝐵 = 2.5 𝑉 .

P3.7 Calculate the 3-dB bandwidth of the circuit shown in Figure 3.28. Note that both MOSFETs
operate in the triode region. Parameters: 𝑊1 = 10 𝜇𝑚, 𝐿1 = 1 𝜇𝑚, 𝑊2 = 10 𝜇𝑚, 𝐿2 = 10 𝜇𝑚,
𝑉𝑆 = 2 𝑉 , 𝑉𝐷𝐷 = 5 𝑉 . Consider only the intrinsic gate capacitance.

P3.8 Plot the magnitude of Equation 3.38 versus frequency using a software package such as
𝑀𝐴𝑇 𝐿𝐴𝐵®∗ and find the exact value of the 3-dB frequency from the resulting graph. Parameters:
𝑔𝑚 = 1 𝑚𝑆, 𝐶𝑔𝑠 = 40.7 𝑓𝐹 , 𝐶𝑔𝑑 = 10 𝑓𝐹 , 𝐶𝑑𝑏 = 11.6 𝑓𝐹 , 𝑅𝑜𝑢𝑡 = 5 𝑘Ω and 𝑅𝑠 = 50 𝑘Ω (same as in
Examples 3-7. Compare the obtained number with the approximate results obtained in Examples
3-7.

Note

MATLAB is a registered trademark of The MathWorks, Inc.,
3 Apple Hill Road, Natick, MA.

P3.9 Calculate the frequency of the non-dominant pole of the circuit analyzed in Example 3-6.

P3.10 For 𝐴𝑣𝑀 = 1, Equation 3.51 predicts an effective input capacitance of 𝐶𝑒𝑓𝑓 = 0. Explain
this result intuitively, in words. Hint: Consider the voltage waveforms at the input and output of
Figure 3.18 for this particular case.

P3.11 In Examples 3-7, we saw that the bandwidth estimate obtained through the Miller Approxi-
mation was in close agreement with the result from the full analysis (incorporating a dominant pole
approximation). In contrast, if we were to apply the Miller Approximation result of Equation 3.56
to Examples 3-8, we would find a large error in the resulting answer (convince yourself that this
is true). Explain why it is not appropriate to use Equation 3.56 to estimate the bandwidth of the
circuit in Examples 3-8.

P3.12 Consider the circuit of Figure 3.24 with the following parameters: 𝑊 = 100 𝜇𝑚, 𝐿 = 2 𝜇𝑚,
𝐼𝐵 = 3 𝑚𝐴, 𝑉𝐵 = 2.5 𝑉 , 𝐶𝐿 = 100 𝑓𝐹 , 𝑅𝐷 = 1 𝑘Ω and 𝑅𝑠 = 10 𝑘Ω .

(a) Estimate the required DC input bias 𝑉𝑆 such that 𝐼𝐷 = 𝐼𝐵 and 𝑉𝑂𝑈𝑇 = 𝑉𝐵. Neglect channel-
length modulation.
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Figure 3.28.
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(b) Calculate the MOSFET’s transconductance and all device capacitances.

(c) Estimate the circuit’s 3-dB bandwidth considering only the intrinsic gate capacitance.

(d) Estimate the circuit’s 3-dB bandwidth using the Miller approximation.

(e) Estimate the circuit’s 3-dB bandwidth using an OCT analysis.

P3.13 Consider the circuit shown in Figure 3.29.

(a) Write an analytical expression for the circuit’s 3-dB bandwidth using an OCT analysis.

(b) Determine the exact analytical result for the circuit’s 3-dB bandwidth.

(c) Compute the percent-error of the result in part (a), relative to the accurate result of part (b).

Figure 3.29.

P3.14 In this chapter, we saw that using the OCT method to estimate a circuits’ bandwidth
tends to be conservative. For example, in a circuit with two identical real poles (and no zeros),
the bandwidth predicted using the OCT method is 22% lower than the actual bandwidth [see
Equation 3.75]. Derive an analytical expression 𝑓(𝑛) that returns the percent error of the OCT
analysis for a circuit with n identical real poles and no zeros. Note that 𝑓(2) = –22%.

P3.15 Consider the common-source voltage amplifier of Figure 3.24. The goal of this design
problem is to achieve a small-signal DC gain of −4 and a 3-dB bandwidth of 80 𝑀𝐻𝑧. In addition,
we wish to minimize the current consumption of the circuit. For simplicity in your calculations,
neglect channel-length modulation and consider only the intrinsic gate capacitance. Assume the
following parameters: 𝑅𝑠 = 2𝑅𝐷, 𝑅𝐷 = 5 𝑘Ω, 𝐶𝐿 = 1 𝑝𝐹 .

a. Show that the required drain current 𝐼𝐷 is related to the circuit’s parameters and specifica-
tions as expressed below. In your analysis, approximate 𝜔3𝑑𝐵 using an OCT analysis. Plot
𝐼𝐷 as a function of 𝑉𝑂𝑉 for 𝐿 = 1 𝜇𝑚 and 𝐿 = 1.5 𝜇𝑚.

𝐼𝐷 = 1
2

𝐶𝐿 ⋅ |𝐴𝑣0| ⋅ 𝜔3𝑑𝐵 ⋅ 𝑉𝑂𝑉
1 − 2

3
𝐿2

𝜇𝑛𝑉𝑂𝑉
⋅ 𝑅𝑠

𝑅𝐷
⋅ |𝐴𝑣0| 𝜔3𝑑𝐵

Note from this result that the choice of the gate overdrive voltage 𝑉𝑂𝑉 plays an important
role in minimizing the required drain current.

b. From the expression and plots found in part (a), it is clear that the minimum channel length
minimizes the current consumption of the amplifier. Explain in your words why this should
be the case.
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c. The drain current expression derived in (a) has a minimum for a certain value of 𝑉𝑂𝑉 . Calcu-
late this value assuming 𝐿 = 1 𝜇𝑚 (minimum length). Also calculate 𝑅𝐷, the device width
and drain current for the transistor at this optimum point.

d. Simulate the design using SPICE with the bias current and device geometries calculated in
part (c). Measure the bandwidth of the circuit using an AC simulation. Since the SPICE
transistor model contains extrinsic capacitances and finite output resistance, your circuit
should fall short of the desired specs (despite the fact that we have used a conservative OCT
estimate for 𝜔3𝑑𝐵). Calculate the percent discrepancies in the gain and bandwidth of the
circuit.

e. Use a spreadsheet or math tool (Excel, 𝑀𝐴𝑇 𝐿𝐴𝐵®∗, etc.) to setup the design equations
for gain and bandwidth that include extrinsic capacitances and finite output conductance.
With these additional modeling components added, it is difficult to derive a compact closed
form solution as above. However, the setup in the spreadsheet will allow you to sweep the
design parameters easily to find the new optimum that meets the gain and bandwidth specs.
There are many different ways in which the spreadsheet can be structured. One is to use the
width of the transistor as the main “knob” and calculate/iterate over all other parameters.
The hand-calculated result can be used as an initial guess in this optimization. Use your
spreadsheet to calculate the new bias current and device size that will meet the specs.

f. Simulate the refined design from (e) in SPICE and verify that you meet the desired specs.
What is the obtained 𝐼𝐷, and how much larger is this value compared to the result from (c)?

Note

MATLAB is a registered trademark of The MathWorks, Inc.,
3 Apple Hill Road, Natick, MA.

P3.16 For the circuit shown in Figure 3.30, prove the following results, quantifying the Thévenin
resistances seen between each pair of transistor terminals. Neglect the finite 𝑟𝑜 of the MOSFET.

𝑅𝑔𝑠 = 𝑅𝐺 + 𝑅𝑆
1 + 𝑔𝑚𝑅𝑆

𝑅𝑑𝑠 = 𝑅𝐷 + 𝑅𝑆
1 + 𝑔𝑚𝑅𝑆

𝑅𝑔𝑑 = 𝑅𝐺 + 𝑅𝐷 + 𝐺𝑚𝑅𝐺𝑅𝐷

where

𝐺𝑚 = 𝑔𝑚
1 + 𝑔𝑚𝑅𝑆

P3.17 The circuit shown in Figure 3.31 is called a “source degenerated” common-source voltage
amplifier. Analyze this circuit as indicated below.
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Figure 3.30.
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a. Neglecting channel-length modulation and all capacitances in the circuit, show that the cir-
cuit’s small-signal DC gain is given by

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

≃ −𝐺𝑚𝑅𝐷

where
𝐺𝑚 = 𝑔𝑚

1 + 𝑔𝑚𝑅𝑆
is called the compound transconductance.

b. Using the results stated in Problem 3.16, estimate the DC gain and 3-dB bandwidth of the
circuit assuming the following parameters: 𝑅𝐺 = 10 𝑘Ω, 𝑅𝑆 = 1 𝑘Ω, 𝑅𝐷 = 5 𝑘Ω, 𝐼𝐷 = 500
𝜇𝐴, 𝐿 = 1 𝜇𝑚, and 𝑊 = 20 𝜇𝑚. Consider only the two time constants contributed by 𝐶𝑔𝑠
and 𝐶𝑔𝑑.

Figure 3.31.
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Stages

TBD.
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5. Biasing Circuits

The elementary transistor stages analyzed in the previous chapters rely on proper voltage and
current biasing to function. So far, we have emulated these bias generators using ideal voltage
and current sources. In this chapter, we will look at practical realizations of these elements using
MOSFETs and passive components available within an integrated circuit.

While there exist numerous possibilities for setting up bias voltages and currents, we consider
here a subset of options that have proven to be robust in practical circuits produced in volume.
Many of the ideas and considerations that go into the design of bias circuitry are intimately related
to the parameter variations seen in an integrated circuit process technology. For instance, threshold
voltages cannot be accurately reproduced from fabrication run to fabrication run, and this mandates
certain measures for desensitization to this parameter. In order to understand the rationale behind
the proposed biasing circuits, we therefore include an overview of the basic variability issues that
analog CMOS circuit designers must be aware of.

Chapter Objectives

• Review basic variability issues relevant for analog integrated circuits in CMOS technol-
ogy.

• Discuss and analyze practical circuits that can establish the bias voltages and currents
required to operate the elementary common-source, common-gate and common-drain
stages.

5.1. Overview

Figure 5.1 provides and overview of the circuitry and topics that will be discussed in this chapter.
The function of the shown circuits will be explained as we progress through this chapter. Following
this introduction, we will investigate basic issues of process variation and device mismatch seen in a
typical CMOS fabrication process. This review will help motivate some of the design choices made
in later sections. Next, in Section 5.3, we investigate current mirror circuits, which are essential to
distributing and generating bias currents in an integrated circuit.

The current that flows into a current mirror circuit is defined by an absolute current reference, for
which there exist many different realizations. In Section 5.4, we will study one relevant example
of a suitable circuit. In Section 5.5, we will then shift to the problem of bias voltage generation,
as relevant for example in setting up the proper gate bias of a common-source or common-gate
stage.
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5. Biasing Circuits

Figure 5.1.: Overview of biasing circuits and topics covered in this chapter.
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5.2. Introduction to Process Variation and Device Mismatch

5.2.1. Process and Temperature Variations

In our analysis of elementary circuit configurations, we have so far implicitly assumed that the
underlying component parameters (e.g., the threshold voltage of a MOSFET) are constant and
accurately known. Unfortunately, this is not the case in reality. Especially in mass-produced
integrated circuits, there are various forms of variability that result in parameter uncertainty due to
imperfect fabrication, lifetime drift and influence of environmental conditions such as temperature
and humidity. In a typical large semiconductor company, entire departments tend to focus on this
issue, and there exists a wealth of related information that could easily fill multiple textbooks. As
a result, the focus in this introductory module is to take a cursory look at only the basic issues,
to the extent that this can help shape our thinking on how to arrive at practical and relatively
insensitive circuit realizations.

The first issue that we will review in this section is related to variations arising from imperfect
fabrication and temperature changes. In the context of fabrication imperfections, we will clearly
distinguish between global process variations and device mismatch. The former term relates
to variations that affect all devices on a chip uniformly, while the latter term refers to differences
between nominally identical devices that are fabricated on the same chip (see Section 5.2.2).

Analog circuit designers often use the term PVT variations to refer to global variations in
process, supply voltage, and temperature (see Table 5.1). The most basic way to capture global
fabrication process variations is to define parameter sets that group the worst case outcomes as
“slow,” “nominal,” and “fast” conditions. This nomenclature was adopted in the context of digital
circuits (relating to the speed of a logic gate), but is also used among analog designers. The various
parameter sets are often called process corners.

Table 5.1.: Examples of typical process, voltage and temperature (PVT) variations.
Process The chip foundry defines three parameter sets for “slow,” “nominal,” and “fast”

conditions.
Voltage The chip’s supply voltage is expected to vary by ±10%. For a nominal supply

of 5 V, this means that all circuits must work for 𝑉𝐷𝐷 = 4.5…5.5 V.
Temperature Consumer products are typically expected to work in ambient temperatures

ranging from 0…70° C. Circuits used in automotive applications must work
reliably from –40…125° C.

Table 5.2 shows how some important integrated circuit parameters may vary across the three
process parameter sets. Here, the nominal column contains the MOSFET parameters that we
have assumed so far in this module (see Table 4-1). In the slow parameter set, the threshold
voltage is increased and the transconductance parameters (�𝐶𝑜𝑥) are reduced; this is the parameter
combination that yields the slowest speed in a logic gate. The opposite is true for the fast parameter
set.
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Table 5.2.: Example of a slow, nominal and fast parameter set in a CMOS fabrication process. These
parameters assume that the temperature is held constant at 25 ° C (room temperature).

Parameter Slow Nominal Fast
𝑉𝑇 0𝑛 , |𝑉𝑇 0𝑝| 0.7 V 0.5 V 0.3 V
𝜇𝑛𝐶𝑜𝑥 40 𝜇𝐴/𝑉 2 50 𝜇𝐴/𝑉 2 60 𝜇𝐴/𝑉 2

𝜇𝑝𝐶𝑜𝑥 20 𝜇𝐴/𝑉 2 25 𝜇𝐴/𝑉 2 30 𝜇𝐴/𝑉 2

𝑅𝑝𝑜𝑙𝑦 60 Ω/𝑠𝑞𝑢𝑎𝑟𝑒 50 Ω/𝑠𝑞𝑢𝑎𝑟𝑒 40 Ω/𝑠𝑞𝑢𝑎𝑟𝑒
𝑅𝑤𝑒𝑙𝑙 1.4 𝑘Ω/𝑠𝑞𝑢𝑎𝑟𝑒 1 𝑘Ω/𝑠𝑞𝑢𝑎𝑟𝑒 0.6 𝑘Ω/𝑠𝑞𝑢𝑎𝑟𝑒
𝐶𝑝𝑜𝑙𝑦 1.15 𝑓𝐹/𝜇𝑚2 1 𝑓𝐹/𝜇𝑚2 0.85 𝑓𝐹/𝜇𝑚2

Table 5.2 also contains examples for parameter variations in passive IC components. 𝑅𝑝𝑜𝑙𝑦 and
𝑅𝑤𝑒𝑙𝑙 are the sheet resistances of a resistor formed by a layer of polysilicon or n-well, respectively.
𝐶𝑝𝑜𝑙𝑦 is the capacitance parameter of a parallel plate capacitor formed by two layers of polysilicon.
Advanced texts on integrated circuit design such as (Gray et al. 2009a) provide further information
about the make-up of these and similar components.

The tabulated parameter variations do not take temperature variations into account; these must
be added on top of the spread from fabrication. Table 5.3 lists a few typical temperature coefficients
for each parameter. For example, if the operating temperature of a chip changes from 0°C to 70°C,
the threshold voltage a MOSFET will shift by an additional –84 mV.

Table 5.3.: Typical temperature coefficients for integrated circuit device parameters.
Parameter Temperature Coefficient
𝑉𝑇 0𝑛 , |𝑉𝑇 0𝑝| − 1.2 mV/°C
𝜇𝑛𝐶𝑜𝑥 − 0.33 %/°C
𝜇𝑝𝐶𝑜𝑥 − 0.33 %/°C
𝑅𝑝𝑜𝑙𝑦 + 0.2 %/°C
𝑅𝑤𝑒𝑙𝑙 + 1 %/°C
𝐶𝑝𝑜𝑙𝑦 − 30 ppm/°C

The main take-home from the shown data is that in practice, the analog IC designer cannot view
component parameters as constant numbers. His or her circuit must be immune to the level of
variability described and function reliably across a large array of outcomes in process, voltage, and
temperature. To show how significant these effects can be when neglected, the following example
considers the impact of process variations on the bias point of a common-source amplifier.

Example 5-1: Impact of Process variations in a Common Source Amplifier

The circuit in Figure 5.2 was previously analyzed in Example 2-2(b) using nominal parameters (at
room temperature). Given 𝑉𝐷𝐷 = 5 V, 𝑅𝐷 = 10 kΩ, W/L = 10 and a desired output bias point of
𝑉𝑂𝑈𝑇 = 2.5 V, we found that the input bias voltage should be set to 𝑉𝐼𝑁 = 1.5 V. Assuming 𝑉𝐼𝑁
= 1.5 V, recompute the circuit’s operating assuming that the MOSFET parameters have shifted
to the fast corner case given in Table 5.2. For simplicity, ignore variations in 𝑅𝐷 and operating
temperature.
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Figure 5.2.: Ex5-1

SOLUTION

Using the given parameters, we can directly compute:

𝑉𝑜𝑢𝑡 = 𝑉𝐷𝐷 − 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐼𝑁 − 𝑉𝑇 𝑛)

2
𝑅𝐷

= 5𝑉 − 1
2 ⋅ 60𝜇𝐴

𝑉 2 ⋅ 10 ⋅ (1.5 − 0.3)2 ⋅ 10𝑘Ω = 0.68𝑉

From this result, we see that the MOSFET no longer operates in saturation (since 𝑉𝐷𝑆 = 0.68 V
< 𝑉𝐺𝑆 – 𝑉𝑇 𝑛 = 1.2 V). Using the MOSFET’s equation for the triode region, we can compute 𝐼𝐷 =
408 �A and 𝑉𝑂𝑈𝑇 = 918 mV. This outcome differs substantially from the nominal operating point,
and the circuit will essentially not function as intended for the fast corner conditions.

The main finding from the above example is that it will usually be impractical to bias the input of
a common-source stage using a fixed bias voltage source. In practice, the integrated circuit designer
generates bias voltages using circuits that will automatically adjust to corner-induced parameter
spread and thereby make the circuit immune to process variations (see Section 5.5).

Generally speaking, a substantial amount of design time is usually spent on identifying bias-
ing approaches that ensure a circuit’s proper bias point across all possible operating conditions. In
addition, once, the circuit is properly biased, the designer must verify that it maintains its key spec-
ifications across corners. A typical scenario is to guarantee a certain worst-case gain or bandwidth
across all PVT scenarios.
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As already mentioned, it is impossible to cover all aspects of robust design across PVT variations at
the introductory level of this module. Nonetheless, having some of the basic knowledge established
above will help us argue qualitatively about the practicality of the circuits discussed in this chapter,
and ensure that they will at least have a chance to work in practice.

5.2.2. Mismatch

The process variations discussed in the previous section account for variability that affects all
devices on a given chip equally. For example, all n-channel MOSFETs on a given chip may have
slow parameters. Different from process variation, we use the term mismatch to capture variations
between nominally identical devices, e.g., two MOSFETs of identical size on the same chip. Such
variations are typically caused by line edge roughness, random doping fluctuations and similar
effects.

Table 5.4.: Typical ranges of parameter mismatch for nominally identical, closely spaced compo-
nents.

Parameter Mismatch
𝑉𝑇 0𝑛 , |𝑉𝑇 0𝑝| 5…30 mV
𝜇𝑛𝐶𝑜𝑥 , 𝜇𝑝𝐶𝑜𝑥 0.5…2%
𝑅𝑝𝑜𝑙𝑦 0.3…2%
𝐶𝑝𝑜𝑙𝑦 0.1…1%

Device mismatch typically follows Gaussian distributions and depends on device size and spacing
(see Pelgrom, Duinmaijer, and Welbers 1989). For our purpose in this module, we will not expand
upon the detailed theory behind this and instead consider only approximate numerical ranges that
are typical for a technology as the one assumed in this module (see Table 5.4).

At first glance, we see from Table 5.4 that device mismatches are typically much smaller than global
process variations.1 For instance, the nominal threshold voltage for n-channel transistors can vary
by ±200mV from fabrication run to fabrication run. However, within a specific fabrication outcome,
the random threshold mismatch between two n-channels on the same chip is on the order of 10
mV.

This observation has a profound impact on the way integrated circuits are architected. That is,
designers will usually try to exploit the fact that the components on the same chip show good
matching. This contrasts with printed circuit board (PCB) design, where the designer often cannot
rely on good matching between the available discrete components. Instead, PCB design can offer
certain components with very high absolute accuracy across fabrication lots, such as 1%-precise
resistors. As we know from Table 5.2, such levels of absolute accuracy are usually not available in
an integrated circuit.

A classical example that exploits transistor matching is the so-called current mirror. This circuit is
ubiquitous in integrated circuits, but infrequently used in PCB circuits. We will now analyze the
current mirror as a first example of a biasing circuit that is insensitive to process variations

1This tends to hold true for technologies with feature sizes above 100 nm. For nano-scale devices, device mismatch
can be comparable to process spread.

148



5.3. Current Mirrors

5.3. Current Mirrors

As we have seen in previous chapters, we would like to use current sources to setup the bias points for
CS, CG, and CD stages. While we could in principle design individual, stand-alone current-source
circuits each time we need a bias current, it is instead customary to work with only one (or a few)
reference current generators on a given chip and “mirror” its current to the various locations where
a bias current is needed. This is sketched out in Figure 5.1: a single reference current generator is
used to feed a distribution network of current mirrors (to be discussed in this section), which then
supplies bias currents to various circuit stages in a given chip or large sub-block.

In this section, we will discuss and analyze current mirror circuits at various levels of detail. We
will begin by considering the most basic structure and perform a first-order analysis for this circuit.
Next, we consider second-order error sources and look at an improved realization that invokes the
cascode structure introduced in Section 4-5-1.

5.3.1. First-Pass Analysis of the Basic Current Mirror

Figure 5.3 shows the most basic realization of a current mirror using two identically sized n-channel
MOSFETs. The circuit takes an input current 𝐼𝐼𝑁 and produces an output current 𝐼𝑂𝑈𝑇 . Neglect-
ing channel-length modulation for the time being, we can compute the gate-source voltage of 𝑀1
using:

𝑉𝐺𝑆1 = 𝑉𝐼𝑁 = 𝑉𝑇 𝑛 +
√√√
⎷

2𝐼𝐼𝑁

𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿

(5.1)

Figure 5.3.: Basic current mirror.

Since the gates and sources of the two MOSFETs are connected, we see that 𝑉𝐺𝑆2 = 𝑉𝐺𝑆1, and
therefore:
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𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 𝐼𝐷2
𝐼𝐷1

=
1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆2 − 𝑉𝑇 𝑛)

2

1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆1 − 𝑉𝑇 𝑛)

2 = 1 (5.2)

Thus, the output current equals the input current (to first-order). In essence, the function of 𝑀1 is
to “compute” the gate-source voltage required for 𝑀2 to supply the same current that is injected
into 𝑀1.

One important feature of this circuit is that it is immune to global process variations. From
Equation 5.2, we see that absolute changes in 𝑉𝑇 𝑛 and 𝜇𝑛𝐶𝑜𝑥 that are common to 𝑀1 and 𝑀2
do not affect the current ratio. The circuit is affected only by mismatches in these parameters.
However, as we have seen in Section 5.2.2, parameter mismatch tends to be small in integrated
circuits.

Figure 5.4.: Application of the basic current mirror in a common-source amplifier.

Figure 5.4 shows an application example of the basic current mirror in a p-channel common-source
amplifier. This example is useful for identifying some general design objectives:

• We want to minimize the error in 𝐼𝑂𝑈𝑇 so that the bias current of the common-source device
is accurately set (see also Section 2-2-8).

• We want to minimize the voltage that is needed to keep 𝑀2 in saturation (to allow for a large
signal swing). We call this minimum voltage level the compliance voltage, 𝑉𝑂𝑈𝑇 𝑚𝑖𝑛.

• We want to minimize the capacitance 𝐶𝑜𝑢𝑡 that the current mirror contributes to the output
node of the amplifier. This will help maximize the circuit’s bandwidth.

• We want to maximize 𝑅𝑜𝑢𝑡, the resistance looking into 𝑀2. A small 𝑅𝑜𝑢𝑡 can substantially
reduce the voltage gain of the circuit in some use cases.

• Lastly, it is desirable to scale the mirror’s branch currents, that is, we want 𝐼𝑂𝑈𝑇 = 𝐾 ⋅ 𝐼𝐼𝑁 ,
where typically 𝐾 > 1. This helps reduce the overall current consumption of the circuit and
provides flexibility in adjusting the current values within a larger distribution network.
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These objectives tend to hold in general for all types of current mirror implementations and we will
keep them in mind as we progress through the remaining subsections. For the time being, let us
look into the scaling of branch currents. Essentially, we would like to accomplish

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 𝐼𝐷2
𝐼𝐷1

=
1
2𝜇𝑛𝐶𝑜𝑥

𝑊2
𝐿2

(𝑉𝐺𝑆2 − 𝑉𝑇 𝑛)
2

1
2𝜇𝑛𝐶𝑜𝑥

𝑊1
𝐿1

(𝑉𝐺𝑆1 − 𝑉𝑇 𝑛)
2 = 𝐾 (5.3)

where 𝐾 is the current scaling factor. From the above expression, assuming that 𝑉𝑇 𝑛 and 𝜇𝑛𝐶𝑜𝑥
are exactly equal for both transistors, it follows that 𝐾 = (𝑊2/𝐿2)/(𝑊1/𝐿1). Thus, current scaling
can be conveniently realized by scaling the MOSFETs’ aspect ratios.

In practice, several guidelines exist on how exactly this scaling should be implemented. The first
and most important guideline is that we should always maintain 𝐿1 = 𝐿2; the current scaling
should be realized by scaling the widths rather than the lengths of the channels. This is preferable
since the current in a modern MOSFET does not accurately scale with 1/𝐿. As already mentioned
in Chapter 2, the 1/𝐿 proportionality in our equations is essentially due to the simplified physical
model that we used in the derivation of the square-law expressions. For the 1-�m technology
assumed in this module, the deviation from the square law model is not as severe as for today’s
sub-100-nm transistors but still significant enough to avoid length scaling in current mirrors. Now,
with 𝐿1 = 𝐿2, the current scaling factor is simply 𝐾 = 𝑊2/𝑊1, to first-order. In the next section,
we will look at various second-order effects that cause 𝐾 to deviate from the width ratio of the
MOSFETs.

5.3.2. Second-Pass Analysis of the Basic Current Mirror

There exist several error sources in a current mirror that will affect its scaling factor. In general,
we classify these error sources into two categories: systematic and random errors. Examples of
systematic errors are

• Errors in transistor width ratios, for example due to mask misalignment or systematic etching
imperfections.

• Differences in the drain-source voltages between 𝑀1 and 𝑀2, leading to current deviations
caused by channel length modulation.

• Differences in the source potentials of 𝑀1 and 𝑀2 due to finite resistance in the interconnect
(so-called “IR drop”).

Examples of random errors are

• Random mismatches in device geometries, for example due to line edge roughness.
• Random mismatch in the transistors’ threshold voltage or transconductance parameter.

In order to attain the best possible accuracy in a current mirror, the IC designer will typically try
to minimize the impact of all of these errors. We will therefore analyze some of the most important
effects and countermeasures in the following paragraphs. For simplicity, our analysis will consider
each effect separately. Ultimately, however, the sum of all errors must be considered in practice.
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5. Biasing Circuits

To analyze the impact of systematic masking or etching errors, consider the specific example of
a current mirror with a desired current ratio of two and a layout as shown in Figure 5.5. Here 𝑀2
is drawn twice as wide as 𝑀1 In an ideal situation, this would yield 𝐾 = 2 based on the first order
result of the previous subsection. In a typical IC process, however, masking or etching errors can
lead to a systematic error in the width of a MOSFET, indicated as �W in the shown layout. With
this error, and neglecting any other imperfections for simplicity, we have

𝐾 = 𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 2𝑊1 + Δ𝑊
𝑊1 + Δ𝑊 =

2 + Δ𝑊
𝑊1

1 + Δ𝑊
𝑊1

≈ 2 − Δ𝑊
𝑊1

(5.4)

where the final approximation follows from a first-order Taylor expansion and holds for Δ𝑊/𝑊1 <<
1.

Figure 5.5.: Layout of a current mirror with a desired current ratio of two.

Especially for small transistors, the error term in Equation 5.4 can be significant. Therefore, it
has become customary to adopt layout styles that eliminate issues due to �W altogether. In the
improved layout of Figure 5.6, 𝑀2 is formed using two unit devices whose layout is identical to that
of 𝑀1. In this case,

𝐾 = 𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 2𝑊1 + Δ𝑊
𝑊1 + Δ𝑊 = 2 (5.5)

and thus the circuit is insensitive to systematic width errors. Note that the idea of working with
unit devices can be extended such that 𝑃 unit devices are used for 𝑀2 and 𝑄 unit devices are used
to form 𝑀1 This means that the mirror ratio 𝐾 = 𝑃/𝑄 is restricted to rational numbers.

152



5.3. Current Mirrors

Figure 5.6.: Improved layout of a current mirror with a desired current ratio of two.
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Figure 5.7.: Layout of a current mirror with shared drain regions.

A variant of the improved unit-device layout is shown in Figure 5.7. Here, the two unit transistors
share a single drain region at the output node and therefore have a smaller output capacitance (𝐶𝑜𝑢𝑡
in Figure 5.4). This general idea is often applied when small 𝐶𝑜𝑢𝑡 is desired in the particular use
case of the current mirror. One disadvantage of the layout in Figure 5.7 is that the source/drain
orientation of the rightmost channel are flipped. This can lead to residual systematic errors in
process technologies that suffer from source/drain asymmetries. However, it can be shown that
this error vanishes when an even number of unit devices are used for both 𝑀1 and 𝑀2 These and
many other considerations are part of the knowledge base of experienced analog designers. The
reader is referred to advanced literature on this topic for further information.

Another significant source of error in the current mirror ratio can result from differences in the
voltages at the input and output nodes of the mirror. To see this, consider the current mirror
example in Figure 5.8, which is assumed to have perfectly matched transistors of the same size. Even
though the two transistors have identical output curves, their drain currents will differ whenever the
input and output voltages do not match. Mathematically, we can analyze this effect by including
channel-length modulation in the analysis. Specifically, since

𝐼𝐼𝑁 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆1 − 𝑉𝑇 𝑛)

2
(1 + 𝜆𝑛𝑉𝐼𝑁) (5.6)

and

𝐼𝑂𝑈𝑇 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 (𝑉𝐺𝑆1 − 𝑉𝑇 𝑛)

2
(1 + 𝜆𝑛𝑉𝑂𝑈𝑇 ) (5.7)
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Figure 5.8.: Mirror error due to differences in drain-source voltage.

we have

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 1 + 𝜆𝑛𝑉𝑂𝑈𝑇
1 + 𝜆𝑛𝑉𝐼𝑁

(5.8)

From this result, we see that there are two ways to reduce errors in the current ratio. We can
try to minimize the difference between 𝑉𝑂𝑈𝑇 and 𝑉𝐼𝑁 as much as possible and/or reduce 𝜆𝑛 by
using long-channel MOSFETs. Note also that reducing �n is equivalent to reducing the small-signal
output conductance 𝑔𝑜, which is simply the slope of the I-V curves in Figure 5.8 The smaller this
slope, the smaller the difference between 𝐼𝑂𝑈𝑇 and 𝐼𝐼𝑁 .

Example 5-2: Current Mirror Error Due to Drain-Source Voltage Difference

Consider the current mirror in Figure 5.8 . Assume 𝑉𝑂𝑈𝑇 = 2.5 V and that the MOSFET width
is chosen such that 𝑉𝐼𝑁 = 1.5 V. Calculate the percent error in the current ratio for L = 1 �m and
L = 3 �m.

SOLUTION

For L = 1 �m, we have $�_n $ = 0.1 𝑉 −1 [seeEq.(2.44)]. Using Equation 5.8, we find in this case

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 1 + 0.1𝑉 −1 ⋅ 2.5𝑉
1 + 0.1𝑉 −1 ⋅ 1.5𝑉 = 1.087 (5.9)

The error in the current ration is 8.7%. Repeating the above calculation for 𝐿 = 3𝜇𝑚(𝜆𝑛 =
0.033𝑉 −1), the error reduces to 3.2%.

Another example of a systematic error source that we will consider here is the voltage drop in
the source connection of the mirror devices (see Figure 5.9). In the shown circuits, we assume for
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simplicity that the two MOSFETs are identical and that 𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁 , i.e., there is no error due to
𝑉𝐷𝑆 differences.

First consider the circuit of Figure 5.9(a), which takes the finite wiring resistance (𝑅𝑊𝐼𝑅𝐸)
between the source terminals of 𝑀1 and 𝑀2 into account. The wire will carry some current, which
is at the minimum equal to the drain current of 𝑀1 flowing toward the ground node of the circuit.
In a poorly constructed layout, the wire may also carry the current from another block (𝐼𝑋) as
shown. The total current in the wire is therefore 𝐼𝑊𝐼𝑅𝐸 = 𝐼𝐼𝑁 + 𝐼𝑋 and 𝑉𝑊𝐼𝑅𝐸 = 𝐼𝑊𝐼𝑅𝐸 ⋅ 𝑅𝑊𝐼𝑅𝐸.
By applying KVL in Figure 5.9(a) we see that 𝑉𝐺𝑆2 = 𝑉𝐺𝑆1 + 𝑉𝑊𝐼𝑅𝐸. Therefore, we can use the
equivalent model of Figure 5.9(b) for further analysis.

Now, assuming that 𝑉𝑊𝐼𝑅𝐸 is relatively small, we can think about this voltage as a small-signal
perturbation around the operating point of 𝑀2 (𝐼𝐷2 = 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁). Therefore, we can write

𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 + 𝑔𝑚𝑉𝑊𝐼𝑅𝐸 (5.10)

and

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 1 + 𝑔𝑚
𝐼𝐼𝑁

𝑉𝑊𝐼𝑅𝐸 = 1 + 2𝑉𝑊𝐼𝑅𝐸
𝑉𝑂𝑉

(5.11)

where 𝑔𝑚 and 𝑉𝑂𝑉 are the transconductance and quiescent point gate overdrive (𝑉𝐺𝑆–𝑉𝑇 𝑛) of the
MOSFETs, respectively. To see that this error source can be quite significant, consider the case of
𝑉𝑂𝑉 = 200𝑚𝑉 and 𝑉𝑊𝐼𝑅𝐸 = 10𝑚𝑉 . The resulting error in the mirror ratio is 10%. In practice,
the designer will mitigate voltage drop issues by (1) minimizing the distance between 𝑀1 and 𝑀2
(to minimize 𝑅𝑊𝐼𝑅𝐸), (2) avoid any excess current (𝐼𝑋) in the source connection between 𝑀1 and
𝑀2 , and (3) work with reasonably large gate overdrive voltages (𝑉𝑂𝑉 ) in current mirrors.

Figure 5.9.: Mirror error due to voltage drop in the source connection.
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As a final step in this subsection, let us now consider a few examples of random mismatch effects
in current mirrors, and specifically mismatch in the transistors’ threshold voltages and transcon-
ductance parameters. The case of threshold voltage mismatch can be modeled exactly as shown
in Figure 5.9(b), but 𝑉𝑊𝐼𝑅𝐸 is now replaced with Δ𝑉𝑇 𝑛, the threshold voltage mismatch between
𝑀1 and 𝑀2. Therefore, we can write in this case

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 1 + 2Δ𝑉𝑇 𝑛
𝑉𝑂𝑉

(5.12)

The conclusion from this expression is similar to what we have already stated above. To minimize
errors due to threshold voltage mismatch, the designer must work with reasonably large values
of 𝑉𝑂𝑉 . Since Δ𝑉𝑇 𝑛 ≈ 10𝑚𝑉 is not unusual in CMOS technology (see Section 5.2.2), it follows
that it is rather difficult to guarantee highly accurate mirror ratios. Even if we make 𝑉𝑂𝑉 = 1𝑉 ,
the corresponding error is still 2%. For the case of transconductance parameter mismatch, we can
write

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

=
1
2(𝜇𝑛𝐶𝑜𝑥)2

𝑊
𝐿 (𝑉𝐺𝑆2 − 𝑉𝑇 𝑛)

2

1
2(𝜇𝑛𝐶𝑜𝑥)1

𝑊
𝐿 (𝑉𝐺𝑆1 − 𝑉𝑇 𝑛)

2 = (𝜇𝑛𝐶𝑜𝑥)2
(𝜇𝑛𝐶𝑜𝑥)1

(5.13)

where (𝜇𝑛𝐶𝑜𝑥)1,2 are the transconductance parameters of the two MOSFETs, and all other param-
eters are assumed to be equal. Thus, for typical mismatch in the transconductance parameter on
the order of 1% (see Section 5.2.2), it is often the case that this particular error is overshadowed
by mismatches in the MOSFETs’ threshold voltages.

5.3.3. Multiple Current Sources and Sinks

The basic current mirror concept discussed so far can be utilized to provide multiple current outputs
that either source a current from 𝑉𝐷𝐷 or sink a current into ground. A circuit that uses p-channel
devices to create multiple currents sourced from 𝑉𝐷𝐷 is shown in Figure 5.10.

If we also require current sinks, the circuit approach shown in Figure 5.11 can be used. Here, the
output current from device 𝑀1 is used as a reference current for the n-channel mirror composed of
𝑀1 and 𝑀2. Note that a direct application for this circuit would be the CS-CD amplifier of Figure
4-28; it requires one current source from 𝑉𝐷𝐷 and one current sink.

Neglecting all error terms, and assuming equal channel lengths, the value of the DC current 𝐼𝑂𝑈𝑇 1
is equal to

𝐼𝑂𝑈𝑇 1 = 𝑊1
𝑊𝑅

𝐼𝑅𝐸𝐹 (5.14)

From this current we have derived a current source and current sink with devices 𝑀2 and 𝑀4.
Ideally, these currents are

𝐼𝑂𝑈𝑇 2 = 𝑊2
𝑊𝑅

𝐼𝑅𝐸𝐹 (5.15)
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Figure 5.10.: PMOS current mirror with multiple outputs.

𝐼𝑂𝑈𝑇 4 = 𝑊4
𝑊𝑅

𝐼𝑂𝑈𝑇 1 = (𝑊4
𝑊3

⋅ 𝑊1
𝑊𝑅

)𝐼𝑅𝐸𝐹 (5.16)

Example 5-3: Current Sources/Sinks

Design current sources with DC current values of 10 �A and 20 �A and current sinks with DC current
values of 10 �A and 40 �A. The small-signal source resistance of all current sources and sinks should
be at least 1 MΩ. The compliance voltage of both current sources and sinks must be less than 0.5
V. You are given one reference current source of 10 �A with which you can derive the others.

SOLUTION

A suitable topology for this design is shown in Figure 5.12. We begin this design by realizing that
in order to meet the compliance voltage requirement, we need 𝑉𝐺𝑆 = 𝑉𝑆𝐺 ≤ 1𝑉 . This defines the
value of (𝑊/𝐿)𝑅.

𝑉𝐺𝑆 = 𝑉𝑇 𝑛 + √ 𝐼𝑅𝐸𝐹
1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿

⇒ (𝑊
𝐿 )

𝑅
= 1.6

If we set (𝑊/𝐿)1 = (𝑊/𝐿)2 = 1.6, then 𝐼𝐷1 = 𝐼𝐷2 = 10𝜇𝐴. To make 𝐼𝐷3 = 40𝜇𝐴, let (𝑊/𝐿)3 =
4(𝑊/𝐿)2 = 6.4. The p-channel devices are sized the same way.

𝑉𝑆𝐺 = 1𝑉 = −𝑉𝑇 𝑝 + √ 𝐼𝑅𝐸𝐹
1
2𝜇𝑝𝐶𝑜𝑥

𝑊
𝐿

⇒ (𝑊
𝐿 )

4
= 3.2

To make 𝐼𝐷5 = 10𝜇𝐴 and 𝐼𝐷6 = 20𝜇𝐴 , we use (𝑊/𝐿)5 = 3.2 and (𝑊/𝐿)6 = 6.4.

158



5.3. Current Mirrors

Figure 5.11.: Circuit to produce a current source 𝑀2 and current sink 𝑀4.
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Figure 5.12.: Ex5-3
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Now we can check the small-signal source resistances. For 𝐼𝐷 = 10𝜇𝐴 and 𝜆𝑛 = 𝜆𝑝 = 0.1𝜇𝑚𝑉 −1/𝐿,
minimum length 𝐿 = 1𝜇𝑚 will already satisfy the requirement of 𝑟𝑜 = 1𝑀Ω. For 𝐼𝐷 = 20𝜇𝐴, we
need 𝐿 = 2𝜇𝑚 and for 𝐼𝐷 = 40𝜇𝐴, we need 𝐿 = 4𝜇𝑚. Since we want all of the n-channels to
have the same length, and all of the p-channels to have the same length, we arrive at the following
design choice (all values in �m): (𝑊/𝐿)𝑅 = (𝑊/𝐿)1 = (𝑊/𝐿)2 = 6.4/4 and (𝑊/𝐿)3 = (4 × 6.4)/4.
For the p-channels: (𝑊/𝐿)4 = (𝑊/𝐿)5 = 6.4/2, and (𝑊/𝐿)6 = (2 × 6.4)/2. As indicated through
the multipliers, the layout of 𝑀3 and 𝑀6 should consist of multiple unit devices.

5.3.4. Cascode Current Mirror

As we have seen in the previous subsection, the accuracy of the current ratio in the basic current
mirror is affected by a number of undesired effects. The cascode current mirror discussed in this
section improves on a subset of these issues. Specifically, as we shall see, it is less sensitive to dif-
ferences between 𝑉𝐼𝑁 and 𝑉𝑂𝑈𝑇 and correspondingly also provides a much larger output resistance
(𝑅𝑜𝑢𝑡). The most basic realization of a cascode current mirror is shown in Figure 5.13(a). The
output branch of this circuit stacks two MOSFETs in a cascode configuration (see Section 4-5-1).
To compute the output resistance of this circuit, we consider the small-signal model of the circuit
in Figure 5.13(b).

Figure 5.13.: Basic cascode current mirror. (a) Complete circuit. (b) Small-signal circuit model for
the output branch.

Note that this circuit resembles the common-gate model of Figure 4-9, with 𝑟𝑠 replaced by 𝑟𝑜1,
which is the output resistance of the bottom transistor 𝑀1. Consequently, 𝑅𝑜𝑢𝑡 is given by Eq.
(4.21), which is repeated here with the proper variable substitutions (𝑟𝑠 → 𝑟𝑜1, 𝑟𝑜 → 𝑟𝑜2 and
𝑔′

𝑚 → 𝑔′
𝑚2, where 𝑔′

𝑚2 = 𝑔𝑚2 + 𝑔𝑚𝑏2)

𝑅𝑜𝑢𝑡 ≈ 𝑟𝑜2[1 + 𝑔′
𝑚2𝑟𝑜1] ≈ 𝑟𝑜2𝑔′

𝑚2𝑟𝑜1 (5.17)
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Thus, the output resistance of this structure is very large, which implies that any changes in the
output voltage will not affect the output current significantly. Mathematically, we can view any
disturbance in 𝑉𝑂𝑈𝑇 as a small signal quantity, 𝑣𝑜𝑢𝑡. The resulting disturbance in the output
current, 𝑖𝑜𝑢𝑡 is simply 𝑣𝑜𝑢𝑡/𝑅𝑜𝑢𝑡, which is small for large 𝑅𝑜𝑢𝑡.

Even though we know that 𝑅𝑜𝑢𝑡 is large from the above quantitative result, it is useful to develop
a qualitative feel for why this must be the case. To investigate, Figure 5.14 shows the output branch
of the cascode current mirror for further inspection.

Figure 5.14.: Qualitative inspection of the output branch in a cascode current mirror.

In this drawing, we apply an output perturbation and consider the voltage swing at the drain of 𝑀1.
Since the resistance at the drain node of 𝑀1 is low (≈ 1/𝑔′

𝑚2), the output voltage perturbation
appears highly attenuated at this node (the attenuation is approximately given by the ratio of
1/𝑔′

𝑚2 and 𝑟𝑜2). Consequently, the drain current of 𝑀1, which is equal to the output current, sees
only a very small voltage perturbation. In essence, 𝑀2 shields the current mirror transistor 𝑀1
from the output disturbance; the drain voltage of 𝑀1 is “pinned” by the low-resistance node created
by 𝑀2.
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Shielding effect of the cascode

Figure 5.15.: (a) cascode with voltage perturbation applied at its output (b) & (c) equivalent
small signal model

Applying KCL we can write

Δ𝑉𝑜𝑢𝑡 − Δ𝑉𝑑1
𝑟𝑜2

− 𝑔′
𝑚2 ⋅ Δ𝑉𝑑1 = Δ𝑉𝑑1

𝑟𝑜1

Δ𝑉𝑜𝑢𝑡 − Δ𝑉𝑑1
𝑟𝑜2

= Δ𝑉𝑑1 ⋅ (𝑔′
𝑚2 + 1

𝑟𝑜1
)

Figure 5.16.: (d) voltage divider between 𝑟𝑜2 and 1/𝑔′
𝑚2 || 𝑟𝑜1
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For 𝑔′
𝑚2𝑟𝑜1 ≫ 1

Δ𝑉𝑜𝑢𝑡 − Δ𝑉𝑑1
𝑟𝑜2

≈ Δ𝑉𝑑1 ⋅ 𝑔′
𝑚2

The equation above reperesents a voltage divider between 𝑟𝑜2 and 1/𝑔′
𝑚2

Figure 5.17.: (e) voltage divider between 𝑟𝑜2 and 1/𝑔′
𝑚2

While the circuit in Figure 5.13 is insensitive to changes in 𝑉𝑂𝑈𝑇 , it is important to realize that
any difference in the drain voltages of 𝑀1 and 𝑀3 will still lead to a (potentially large) systematic
error. Similar to Equation 5.8, we can write

𝐼𝑂𝑈𝑇
𝐼𝐼𝑁

= 𝐼𝐷1
𝐼𝐷3

= 1 + 𝜆𝑛𝑉𝐷𝑆1
1 + 𝜆𝑛𝑉𝐷𝑆3

(5.18)

For this reason, the circuit is purposely constructed such that nominally 𝑉𝐷𝑆1 = 𝑉𝐷𝑆3. Assuming
that 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 and that 𝑀2 and 𝑀4 are identical, applying KVL to the circuit of Figure 5.13
reveals

𝑉𝐷1 = 𝑉𝐷3 + 𝑉𝐺𝑆4 − 𝑉𝐺𝑆2 = 𝑉𝐷3 (5.19)

Thus, the circuit of Figure 5.13 effectively eliminates this important shortcoming of the basic current
mirror.

Unfortunately, the benefits of the cascode current mirror do not come for free. Specifically, notice
that the circuit’s output compliance voltage (𝑉𝑂𝑈𝑇 𝑚𝑖𝑛 is significantly larger than that of a basic
current mirror. In a basic current mirror (Figure 5.3), we have 𝑉𝑂𝑈𝑇 𝑚𝑖𝑛 = 𝑉𝐷𝑆𝑠𝑎𝑡2 = 𝑉𝑂𝑉 2, which
is the gate overdrive voltage of the MOSFET in the output branch. For the cascode current mirror,
we can investigate the situation by considering Figure 5.18, which graphically illustrates all voltage
levels and voltage drops. Here, we assume for simplicity that all threshold (𝑉𝑇 𝑛) and gate overdrive
voltages (𝑉𝑂𝑉 ) are identical. With this assumption, the voltage at the drain of 𝑀1 is 𝑉𝑇 𝑛 + 𝑉𝑂𝑉 .

164



5.3. Current Mirrors

Figure 5.18.: Analysis of the compliance voltage in the basic cascode current mirror.

This implies that 𝑀1 will always be in saturation, since the drain-source voltage exceeds 𝑉𝑂𝑉 by
some margin (equal to 𝑉𝑇 𝑛). In order for 𝑀2 to operate in saturation, we require

𝑉𝐷𝑆2 = 𝑉𝑂𝑈𝑇 − (𝑉𝑇 𝑛 + 𝑉𝑂𝑉 ) > 𝑉𝐷𝑆𝑠𝑎𝑡2 = 𝑉𝑂𝑉 (5.20)

and thus

𝑉𝑂𝑈𝑇 > 𝑉𝑇 𝑛 + 2𝑉𝑂𝑉 (5.21)

which means 𝑉𝑂𝑈𝑇 𝑚𝑖𝑛 = 𝑉𝑇 𝑛 +2𝑉𝑂𝑉 . Note that for typical values of 𝑉𝑂𝑉 and 𝑉𝑇 𝑛, the compliance
voltage of the cascode current mirror can become quite large, e.g., 0.5 V + 1 V = 1.5 V, taking
away a significant amount of signal swing from the available voltage supply range (consider for
example Figure 5.4).

5.3.5. The High-Swing Cascode Current Mirror

In applications where the large compliance voltage of the circuit in Figure 5.13 is problematic, an
alternative scheme, called high swing cascode current mirror can be used. We will develop
this circuit from the previous solution using a few intermediate steps.
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First, consider the output branch of a cascode current mirror as shown in Figure 5.19. In the
annotation of this circuit, it is assumed that 𝑉𝐺2 is set up such that 𝑀1 operates at the edge of
saturation, i.e., 𝑉𝐷𝑆 = 𝑉𝐷𝑆𝑠𝑎𝑡 = 𝑉𝑂𝑉 . In this case, we require

𝑉𝑂𝑈𝑇 − 𝑉𝑂𝑉 > 𝑉𝐷𝑆𝑠𝑎𝑡2 = 𝑉𝑂𝑉 (5.22)

and thus

𝑉𝑂𝑈𝑇 > 2𝑉𝑂𝑉 (5.23)

which means 𝑉𝑂𝑈𝑇 𝑚𝑖𝑛 = 2𝑉𝑂𝑉 , corresponding to a substantial improvement over Equation 5.21.

Figure 5.19.: Desired output branch biasing to achieve the minimum possible compliance voltage.

The question that remains is how exactly 𝑉𝐺2 should be generated to achieve this improvement.
To investigate, we first compute the required value of 𝑉𝐺2 by applying KVL in Figure 5.19

𝑉𝐺2 − 𝑉𝐷𝑆1 + 𝑉𝐺𝑆2 = 𝑉𝑇 𝑛 + 2𝑉𝑂𝑉 (5.24)

It turns out that many options exist for setting 𝑉𝐺2 to the above-calculated value. The most
basic option is shown in Figure 5.20. Here, an extra current branch is introduced to bias the added
transistor 𝑀6. In a practical implementation, this current typically originates from an extra branch
added to a PMOS current mirror in the overall biasing network. The key idea in this setup is that
𝑀6 is sized to one-quarter the width used for 𝑀2.
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Figure 5.20.: Basic circuit for cascode voltage generation.

167



5. Biasing Circuits

With this sizing, we have

𝑉𝐺2 = 𝑉𝐺𝑆6 = 𝑉𝑇 𝑛 + √ 2𝐼𝐷6
𝜇𝑛𝐶𝑜𝑥

𝑊/4
𝐿

= 𝑉𝑇 𝑛 + 2√ 2𝐼𝑂𝑈𝑇
𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿

= 𝑉𝑇 𝑛 + 2𝑉𝑂𝑉

(5.25)

which achieves the desired objective.

In practice, the designer will usually not want to bias 𝑀1 exactly at the edge of saturation,
but rather leave some margin. This can be achieved by sizing the width ratio smaller than 1/4.
Table 5.5 shows the resulting margins for a few integer ratios. Choosing a sizing ratio of 1/6 often
yields a reasonable compromise between compliance voltage and circuit robustness in a practical
circuit.

Table 5.5.: 𝑉𝐷𝑆1 as a function of the ratio 𝑘 = 𝑊6/𝑊2 in the circuit of Figure 5.21.
k = W6/W2 VDS1 VDS1 − VOV

(Margin)
1/4 𝑉𝑂𝑉 0
1/5 1.24 𝑉𝑂𝑉 0.24 𝑉𝑂𝑉
1/6 1.45 𝑉𝑂𝑉 0.45 𝑉𝑂𝑉
1/7 1.64 𝑉𝑂𝑉 0.64 𝑉𝑂𝑉
1/8 1.83 𝑉𝑂𝑉 0.83 𝑉𝑂𝑉
1/9 2 𝑉𝑂𝑉 𝑉𝑂𝑉

In order to complete the high-swing cascode current mirror circuit, we still need to design the
circuit’s input branch. The most obvious (but non-preferred) solution for the input branch is
shown in Figure 5.21(a).

This circuit suffers from the problem that 𝑉𝐷𝑆1 ≠ 𝑉𝐷𝑆3, and therefore a systematic error is in-
troduced in the mirror ratio (see Equation 5.18). An elegant solution to this problem is shown in
Figure 5.21(b), where 𝑀4 has been added to replicate the gate-source voltage drop of 𝑀2, such
that 𝑉𝐷𝑆1 = 𝑉𝐷𝑆3. Just as in the circuit of Figure 5.21(a), the gate voltage of 𝑀3 self-adjusts to
the point where 𝑀3 carries the injected current (𝐼𝐼𝑁). 𝑀4 merely acts as a current buffer, passing
all of the input current to 𝑀3.

The final circuit of Figure 5.21(b) has been widely used in practice and is insensitive to process
variations, such as global shifts in threshold voltage, Nonetheless, there are two remaining issues
with this circuit that are worth mentioning. First, it is sometimes inconvenient to provide the extra
current source used to bias 𝑀6. Problems P5.5 and P5.6 look into alternative solutions that do not
require an extra input current source, but still achieve low compliance voltage in the output branch.
The second issue stems from the backgate effect. In our analysis above, we have neglected the fact
that the threshold voltage of 𝑀2 will be larger than that of 𝑀6. This is because the source of 𝑀6
is connected to ground (and thus 𝑉𝑆𝐵6 = 0), while the source potential of 𝑀2 is positive (and thus
𝑉𝑆𝐵2 > 0). As a result, assuming a sizing ratio of 1/4, 𝑉𝐷𝑆1 is more accurately given by
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Figure 5.21.: High-swing cascode current mirror with input branch included. (a) Non-preferred
solution that suffers from a systematic mirror ratio error. (b) Solution that avoids the
systematic mirror ratio error.

𝑉𝐷𝑆1 = 𝑉𝐺𝑆6 − 𝑉𝐺𝑆2

= 𝑉𝑇 𝑛0 + 2𝑉𝑂𝑉 − [𝑉𝑇 𝑛(𝑉𝑆𝐵2) + 𝑉𝑂𝑉 ]

= 𝑉𝑂𝑉 − [𝑉𝑇 𝑛(𝑉𝑆𝐵2) − 𝑉𝑂𝑉 ] = 𝑉𝑂𝑉 − Δ𝑉𝑇 𝑛

(5.26)

where Δ𝑉𝑇 𝑛 is a positive quantity that causes 𝑀1 to enter the triode region, unless sufficient
margin is provided. In practice, the designer can use computer simulations to ensure that sufficient
saturation margin is guaranteed. Another option is to change the circuit to mitigate this problem
at its root. The thought process that leads to the alternate solution is illustrated in Figure 5.22.

The biasing transistor 𝑀6, as discussed previously, is redrawn in isolation in Figure 5.22(a). Fig-
ure 5.22(b) shows an equivalent circuit that breaks 𝑀6 into four transistors, each with an aspect
ratio of W/L. Assuming that the ideal square law model holds, the series connection of these tran-
sistors behaves like a MOSFET with aspect ratio of W/(4L), or (W/4)/L (see Problem P2.2).

Consequently, 𝑉𝐺2 must be equal to 𝑉𝑇 𝑛+2𝑉𝑂𝑉 , as in the original circuit of Figure 5.22(a). Further-
more, notice that the transistor 𝑀6𝑎 in Figure 5.22(b) must operate in the saturation region (since
it is diode-connected). This means that this MOSFET’s gate-source voltage is equal to 𝑉𝑇 𝑛 + 𝑉𝑂𝑉 ,
and the potential at its source node is equal to 𝑉𝑂𝑉 .

Next, in Figure 5.22(c), the three bottom transistors are lumped into a single device, again
based on the argument that a device with an aspect ratio of W/(3L) can be replaced with one that
has (W/3)/L. Note that the combined transistor (𝑀6𝑏 in Figure 5.22(c)) operates in the triode
region, since its drain-source voltage (𝑉𝑂𝑉 ) is smaller than 𝑉𝐺𝑆6𝑏–𝑉𝑇 𝑛 = 2𝑉𝑂𝑉 . Of course, all of
the above conceptual arguments can be validated quantitatively, by carrying out a first-principle
analysis using MOSFET I-V equations.

The main advantage of the circuit in Figure 5.22(c) becomes apparent when it is inserted back
into the cascode current mirror, as shown in fig-5.18. Since 𝑀6𝑎 has the same W/L and carries
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Figure 5.22.: Conceptual steps for replacing the W/4 cascode biasing device with a two-transistor
compound circuit

the same current as 𝑀2, the source potential of these transistors is identical (neglecting channel
length modulation). Hence, the error term due to backgate effect that we saw in Equation 5.26 is
suppressed, since 𝑉𝑆𝐵2 = 𝑉𝑆𝐵6𝑎.

𝑉𝐷𝑆1 = 𝑉𝐷𝑆6𝑏 + 𝑉𝐷𝑆6𝑎 − 𝑉𝐺𝑆2

= 𝑉𝑂𝑉 + 𝑉𝑇 𝑛(𝑉𝑆𝐵6𝑎) + 𝑉𝑂𝑉 − [𝑉𝑇 𝑛(𝑉𝑆𝐵2) + 𝑉𝑂𝑉 ]
= 𝑉𝑂𝑉

(5.27)

Finally, note that even though the circuit of Figure 5.23 provides a somewhat less error-prone setup
for the generation of 𝑉𝐺2, the designer will still want to leave margin and back off from the ideal
W/3 sizing for 𝑀6𝑏. Table 5.5 lists the margin for various integer choices larger than 3 (see also
problem P5.4).

Example 5-4: Design of a Cascode Current Mirror

The cascode current mirror in Figure 5.23 is configured such that 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 . In this example,
we wish to design a similar current mirror that sets 𝐼𝑂𝑈𝑇 = 4𝐼𝐼𝑁 = 400𝜇𝐴. 𝑀1 and 𝑀2 are to
be sized such that 𝑉𝑂𝑉 = 200𝑚𝑉 and using a channel length of 2 �m. 𝑀6𝑏 should be sized such
that m = 5. Given these specifications, determine all transistor widths and node voltages. Also
compute the circuit’s output compliance voltage and output resistance (𝑅𝑜𝑢𝑡). Neglect channel-
length modulation in bias point calculations.

Table 5.6.: 𝑉𝐷𝑆1 as a function of width scaling factor m for 𝑊6𝑏 in Figure 5.23.

m
VDS1 VDS1 − VOV

(Margin)
3 𝑉𝑂𝑉 0
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m
VDS1 VDS1 − VOV

(Margin)
4 1.24 𝑉𝑂𝑉 0.24 𝑉𝑂𝑉
5 1.45 𝑉𝑂𝑉 0.45 𝑉𝑂𝑉
6 1.64 𝑉𝑂𝑉 0.64 𝑉𝑂𝑉
7 1.83 𝑉𝑂𝑉 0.83 𝑉𝑂𝑉
8 2 𝑉𝑂𝑉 𝑉𝑂𝑉

SOLUTION

The width of 𝑀1 and 𝑀2 is found by solving

𝐼𝑂𝑈𝑇 = 1
2𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 𝑉 2

𝑂𝑉

for W, and inserting the given numbers and technology parameters. This yields 𝑊1 = 𝑊2 = 800𝜇𝑚.
To implement the current ratio 𝐼𝑂𝑈𝑇 /𝐼𝐼𝑁 = 4, we require 𝑊3 = 𝑊4 = 𝑊6𝑎 = 𝑊1/4 = 200𝜇𝑚 and
𝑊6𝑏 = 𝑊6𝑎/5 = 40𝜇𝑚.

The voltage 𝑉𝐺1 is simply 𝑉𝑇 𝑛 + 𝑉𝑂𝑉 = 0.7𝑉 . With m=5, we know from Table 5.6 that
𝑉𝐷1 = 𝑉𝐷3 = 𝑉𝐷6𝑏 = 1.45𝑉𝑂𝑉 = 290𝑚𝑉 . To compute 𝑉𝐺2 accurately, we must first estimate the
threshold voltage of 𝑀6𝑎 using

𝑉𝑇 𝑛(𝑉𝑆𝐵) = 𝑉𝑇 0𝑛 + 𝛾𝑛 ⋅ (√2𝜙𝑓 + 𝑉𝑆𝐵 − √2𝜙𝑓)

Evaluating the above equation with 𝑉𝑆𝐵6𝑎 = 𝑉𝐷6𝑏 = 290𝑚𝑉 gives 𝑉𝑇 6𝑎 = 590𝑚𝑉 . Therefore,
𝑉𝐺2 = 1.45𝑉𝑂𝑉 + 𝑉𝑇 6𝑎 + 𝑉𝑂𝑉 = 1.08𝑉 . The circuit’s output compliance voltage is 𝑉𝑂𝑈𝑇 𝑚𝑖𝑛 =
𝑉𝐷1 + 𝑉𝑂𝑉 = 0.49𝑉 . The circuit’s output resistance is given by 𝑅𝑜𝑢𝑡 ≅ 𝑟𝑜1 ⋅ 𝑔′

𝑚2𝑟𝑜2 (see Section
4-5-1). Therefore, we compute

𝑔𝑚2 = 2𝐼𝐷2
𝑉𝑂𝑉

= 2 ⋅ 400𝜇𝐴
200𝑚𝑉 = 4𝑚𝑆

𝑔′
𝑚2 = 𝑔𝑚2(1 + 𝛾𝑛

2√2𝜙𝑓 + 𝑉𝑆𝐵
)

= 4𝑚𝑆(1 + 0.6𝑉 −1

2√0.8𝑉 + 0.29𝑉 ) = 5.15𝑚𝑆

and

𝑟𝑜1 ≈ 𝑟𝑜2 ≈ 1
𝜆𝑛𝐼𝐷1

= 1
0.05𝑉 −1 ⋅ 400𝜇𝐴 = 500𝑘Ω

These numbers lead to 𝑅𝑜𝑢𝑡 ≅ 12.88𝑀Ω. The schematic in Figure 5.24 summarizes the results
obtained in this example.
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Figure 5.23.: Complete high-swing cascode current mirror using a triode device (𝑀6𝑏) for cascode
biasing.
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Figure 5.24.: Ex5-4
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5.4. Current References

The current mirror circuits discussed in the previous section are useful for replicating and distribut-
ing bias currents within a sub-circuit or an entire chip. Ultimately, however, the currents that are
being distributed must originate from some form of a reference current generator (see Figure 5.1).
Over the years, a wide variety of current references have been developed, each having specific pros
and cons for the intended application. Within the scope of this introductory module, we will
consider only two examples, primarily as a starting point for further reading and to complete the
picture on how a complete biasing network within a larger chip might be constructed. For a more
comprehensive discussion, the reader is referred to advanced texts such as (Gray et al. 2009a).

We begin by considering the most basic of all possible reference generator circuits, shown in Fig-
ure 5.25. This circuit is essentially a current mirror, with its input branch tied to the supply via a
resistor.

Figure 5.25.: Simple supply-referenced current generator.

In this circuit, we have

𝐼𝑂𝑈𝑇 ≈ 𝐼𝐼𝑁 = 𝑉𝐷𝐷 − 𝑉𝑇 𝑛 − 𝑉𝑂𝑉
𝑅 (5.28)

From this result, noting that typically 𝑉𝐷𝐷 ≫ 𝑉𝑇 𝑛, and 𝑉𝐷𝐷 ≫ 𝑉𝑂𝑉 , we see that the current is
roughly proportional to the supply voltage. Given the variations in supply voltage that a robust
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circuit must withstand (see Table 5.1), this solution is often not suitable for all but relatively
primitive and low-performance circuits. What we desire is a current generator that is (to first-order)
insensitive to supply variations. The so-called self-biased constant-gm current generator discussed
next is an example of an improved circuit that is frequently used in practice. To understand the
self-biased constant-gm current generator, consider first the circuit shown in Figure 5.26(a).

Figure 5.26.: (a) Core building block of a constant-gm current generator. (b) Current transfer
characteristics for various scenarios.

This is a current mirror-like circuit with a resistor 𝑅 added in the source of 𝑀2. Assuming that
𝑀2 is scaled 𝑚 times wider than 𝑀1, and letting 𝑅 = 0 for the time being, we know that 𝐼𝑂𝑈𝑇
is approximately equal to 𝑚 ⋅ 𝐼𝐼𝑁 . This is illustrated using the dashed line (i) in the graph of
Figure 5.26(b). Line (ii) is included for reference, corresponding to 𝑚 = 1, i.e., 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 . Now,
assuming 𝑚 > 1 and 𝑅 > 0, we know that 𝐼𝑂𝑈𝑇 must be smaller compared to case (i) with 𝑅 = 0.
This is because the voltage drop across 𝑅 reduces the gate-source voltage of 𝑀2 and consequently
results in smaller 𝐼𝑂𝑈𝑇 . As 𝐼𝐼𝑁 increases, 𝐼𝑂𝑈𝑇 [curve (iii)] bends away further and further from
line (i) and ultimately intersects with line (ii). While it is possible to derive a closed-form equation
of this curve (see problem P5.7), we focus our attention on point P. A particularly interesting
property of point P is that it defines an absolute current level that (to first-order) depends only on
the MOSFET sizes and 𝑅, i.e., it is independent of the supply voltage. In order to build a current
reference that utilizes this point, a few extra transistors must be employed, as shown in Figure 5.27.
First focus on 𝑀3 and 𝑀4. These transistors form a current mirror that forces 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 , which
is necessary for operation at point P (see Figure 5.26(b)).

Unfortunately, simply forcing 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 does not guarantee that the circuit operates at P. There
exists another (undesired) point where 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 = 0, labeled U in Figure 5.26(b). If only
𝑀1–𝑀4 were present in this circuit, it would not be clear which operating point the circuit will
chose when the supply voltage is turned on. The outcome may depend on second-order effects, such
as parasitic capacitive coupling, and on how quickly the supply ramps up.

In order to guarantee that the circuit will eventually operate at point P, the designer will always
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Figure 5.27.: Complete self-biased constant-gm current reference circuit.

include a so-called start-up circuit. This circuit is formed by 𝑀6–𝑀8 in Figure 5.27.

To understand the operation of the start-up circuit, consider first the case where the circuit
starts up in point U, i.e., 𝐼𝑂𝑈𝑇 = 𝐼𝐼𝑁 = 0. This condition necessitates that 𝑉𝐺𝑆2 < 𝑉𝑇 𝑛, since no
drain current is flowing in 𝑀2. With 𝑉𝐺𝑆2 < 𝑉𝑇 𝑛, 𝑀7 will be off and 𝑀6 will be on, pulling the
voltage at node 𝑉𝑆𝑇 𝐴𝑅𝑇 toward 𝑉𝐷𝐷. Thus, 𝑀8 will turn on and force a drain current into 𝑀3,
which will subsequently be mirrored into 𝑀4 and 𝑀2. Therefore, the circuit has no choice but to
leave point U and ultimately arrive at P, which is the only other possible DC operating point.

Once point P is reached we have 𝑉𝐺𝑆2 > 𝑉𝑇 𝑛 by some overdrive voltage, typically a few hundred
millivolts. For the given 𝑉𝐺𝑆2 in this point, 𝑀7 must be sized large enough so that 𝑉𝑆𝑇 𝐴𝑅𝑇 lies
near ground, and no current flows in 𝑀8 (𝐼𝑆𝑇 𝐴𝑅𝑇 = 0). In a typical design 𝑀7 is much larger than
𝑀6, resulting in a so-called low-threshold inverter.

Our final task is to compute the current 𝐼𝑅𝐸𝐹 = 𝐼𝐼𝑁 = 𝐼𝑂𝑈𝑇 in Figure 5.27. We begin by applying
KVL around the gate-source voltages of 𝑀1 and 𝑀2.

𝐼𝑅𝐸𝐹 𝑅 = 𝑉𝐺𝑆2 − 𝑉𝐺𝑆1 (5.29)

Neglecting backgate effect, i.e., assuming equal threshold voltages for 𝑀1 and 𝑀2 (for simplicity),
Equation 5.29 becomes

𝐼𝑅𝐸𝐹 𝑅 = 𝑉𝑂𝑉 2 − 𝑉𝑂𝑉 1 (5.30)

Now, since for a MOSFET

176



5.4. Current References

𝑉𝑂𝑉 = √ 2𝐼𝐷
𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿

(5.31)

and 𝑀1 is 𝑚 times wider than 𝑀2, Equation 5.30 can be rewritten as

𝐼𝑅𝐸𝐹 =
𝑉𝑂𝑉 2(1 − 1√𝑚)

𝑅 (5.32)

Finally, eliminating 𝑉𝑂𝑉 2 using Equation 5.31 and solving for 𝐼𝑅𝐸𝐹 gives

𝐼𝑅𝐸𝐹 = 2(√𝑚 − 1)2

𝑚 ⋅ 1
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛
𝐿𝑛

𝑅2
(5.33)

This equation is primarily useful for setting the absolute current level in the circuit, and at first
glance does not seem to have any special structure. A much more important result from the above
analysis follows from considering the transconductance of 𝑀2, given by

𝑔𝑚2 = 2𝐼𝐷2
𝑉𝑂𝑉 2

= 2𝐼𝑅𝐸𝐹
𝑉𝑂𝑉 2

=
2(1 − 1√𝑚)

𝑅 (5.34)

As we see from this result, 𝑔𝑚2 depends only on the resistance 𝑅 and the scaling factor 𝑚, i.e., the
transconductance will not be affected by MOSFET process and temperature variations. In a way,
the circuit “recomputes” 𝐼𝑅𝐸𝐹 such that the transconductance is held constant to the value given
by Equation 5.34. This is the reason why this circuit is typically called a constant-gm reference
generator, as mentioned earlier. It should be noted, of course, that not only the transconductance
of 𝑀2 is held constant when this circuit is used. Any other MOSFET that utilizes 𝐼𝑅𝐸𝐹 or a copy
of this current will behave similarly.

In practice, the device type used to implement resistor 𝑅 should be chosen with care. When
implemented on-chip, the designer will often opt for a highly doped polysilicon resistor that has
relatively small process variations and a small temperature coefficient (see Table 5.2 and Table 5.3).
Alternatively, the resistance is sometimes placed off-chip, where it can be realized, for example,
with a 1%-accurate and low temperature coefficient metal film resistor.2

As a final note, we should emphasize that the foregoing analysis neglected many second-order effects,
such as channel-length modulation and back-gate effect. In practice, these effects can have some
bearing on the circuit’s accuracy and therefore leave room for improvements (such as including
cascode transistors). The interested reader will find many articles on this topic in analog circuit
literature and advanced texts, such as (Gray et al. 2009a).

2When the resistor is placed off-chip, the designer must take great care to avoid stability issues. Using feedback
circuit analysis techniques, it can be shown that even relatively small amounts of parasitic capacitance at the
source node of 𝑀1 can make the circuit oscillate.
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5. Biasing Circuits

5.5. Voltage Biasing Considerations

In addition to bias currents, building a complete ana- log circuit will require the generation of
various bias voltages needed to operate common-source, common-gate and common-drain stages
(see for example 𝑉𝐵1 and 𝑉𝐵2 in Figure 5.1). In this section we will discuss an exemplary subset of
solutions that have found their use in practice.

As we have already seen in Example 5-1, the com- mon-source stage is very sensitive to variations
in its input bias voltage. As a result, a majority of practical CS circuits are embedded in feedback
networks that regulate the input bias voltage to the proper value, thereby absorbing process vari-
ations and mismatch effects. Since feedback is beyond the scope of this module, the input biasing
techniques suggested for the common-source stage are meant to be applied only to a subset of
applications where the circuit’s voltage gain is low (typically < 10), and the amplifier is utilized
“open-loop,” without a feedback network. This complication typically does not exist for CG and
and CD stages, and the proposed circuits are therefore more or less universally applicable.

5.5.1. Voltage Biasing for a Common-Source Stage

Due to the voltage gain of a CS amplifier, its input bias voltage usually cannot be set to a fixed
voltage without causing prohibitive sensitivities to component variations and mismatch. Thus,
it is important to design the bias circuitry with variability in mind and construct solutions that
can track or absorb any significant deviations from nominal parameter conditions. Especially for
common-source stages, soltions applied in practice often involve the use of feedback or differential
circuit topologies (see Gray et al. 2009a). Since these topics are beyond the scope of this module,
we will concentrate here only on a few basic ideas that can be understood with the prerequisites
established so far.

Specifically, we will focus in this subsection on a few possible solutions to the problem encountered
in Example 5-1. The main problem in this example was that the input bias voltage was held
constant, while the threshold voltage and other parameters in the circuit changed due to process
variations. Ideally, we would like to “automatically compute” the input bias voltage of the stage
such that it tracks the required value across process corners.

A first option that accomplishes this is shown in Figure 5.28. Here, 𝑀1 is the MOSFET that
implements the common-source amplifier and 𝑣𝑠 and 𝑅𝑠 model a transducer that generates the
voltage we wish to amplify. The transistor 𝑀2 is a replica device that computes the proper
gate-source voltage required to carry the current 𝐼𝐵. Note that this overall arrangement resembles
a current mirror, which we have already determined to be insensitive to process variations. If 𝑉𝑇 𝑛
or 𝜇𝑛𝐶𝑜𝑥 change, the gate-source voltage of 𝑀1 (𝑉𝐵) adjusts so that this transistor’s drain current
remains equal to 𝐼𝐵. This means (to first-order) that no current flows into the resistive divider
formed by 𝑅1 and 𝑅2. These resistors can be sized to establish the desired output quiescent point
and voltage gain. For example, for 𝑅1 = 𝑅2 and 𝑉𝐷𝐷 = 5𝑉 , we have 𝑉𝑂𝑈𝑇 = 2.5𝑉 , approximately
independent of process and temperature.

While the above-discussed circuit will work robustly, it has one big limitation in that both trans-
ducer terminals must be accessible and compatible with the bias voltage desired for 𝑀1. One possi-
bility for overcoming this constraint is to employ AC coupling (see Figure 5.29). AC coupling means
that the transducer signal is coupled into the circuit via a capacitor. In the circuit of Figure 5.29
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5.5. Voltage Biasing Considerations

Figure 5.28.: Replica biasing approach for setting up the quiescent point gate-source voltage of a
common-source stage.

𝑅𝑙𝑎𝑟𝑔𝑒 and 𝐶𝑙𝑎𝑟𝑔𝑒 form a first-order high pass filter with corner frequency 𝜔𝑐 = 1/𝑅𝑙𝑎𝑟𝑔𝑒𝐶𝑙𝑎𝑟𝑔𝑒
(neglecting the resistance 1/𝑔𝑚2, which is in series with 𝑅𝑙𝑎𝑟𝑔𝑒).

To avoid filtering the signal, 𝜔𝑐 must be chosen smaller than the smallest frequency of interest.
For instance, if we are interested in amplifying a 20 Hz signal (the lower end of the audio fre-
quency spectrum), we need 𝑅𝑙𝑎𝑟𝑔𝑒𝐶𝑙𝑎𝑟𝑔𝑒 > 1/(2𝜋 ⋅ 20𝐻𝑧) ≅ 4𝑚𝑠. Assuming we can comfortably
integrate resistances up to 100𝑘Ω on our chip, this means that 𝐶𝑙𝑎𝑟𝑔𝑒 > 4𝑛𝐹 . Such a large capaci-
tance is typically impractical for integration on chip and would have to be realized as an external
component.

A shortcoming of the circuit in Figure 5.29 is that the resistors 𝑅𝑙𝑎𝑟𝑔𝑒 and 𝑅𝑠 form a voltage divider,
which can be detrimental when 𝑅𝑠 is very large. Figure 5.30 shows an alternate approach in which
the transducer can be directly connected to the MOSFET gate. In this circuit, the bias current
𝐼𝐵 is injected into the drain of the common-source transistor (𝑀1) and extracted again using the
current mirror formed by 𝑀2 and 𝑀3. The bias point voltage at node X is given by 𝑉𝐵–𝑉𝐺𝑆1,
which places constraints on the minimum required value for 𝑉𝐵. Note however, that 𝑉𝐵 does not
have to be accurately set or track process variations; as long as 𝑀1 and 𝑀2 are in saturation,
node X tracks (DC) changes in 𝑉𝐵 and the circuit remains properly biased. As far as the signal is
concerned, the capacitor 𝐶𝑙𝑎𝑟𝑔𝑒 establishes an AC ground at the source of 𝑀1 beyond the high-pass
corner frequency of the circuit. Just as in the previous circuit, it can be shown that the AC coupling
capacitor must take on large values to enable the passing of low frequencies through the circuit.

As we have seen from the previous examples, achieving proper biasing together with the processing
of low-frequency signals in a basic common-source stage comes with some undesired constraints
and restrictions. Many of these issues can be mitigated when the signal is present in the form of
a current, originating for example from a common-gate stage that is driving the common-source
amplifier. We will see an example of such a circuit in Chapter 6.
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Figure 5.29.: Replica biasing approach using AC coupling.
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Figure 5.30.: Biasing-approach using AC coupling at the source of a common-source stage.

5.5.2. Voltage Biasing for a Common-Gate Stage

Compared to a common-source stage, setting up the bias voltage for the gate of a common-gate
stage is usually less intricate. To see this, we consider two classical usage examples shown in
Figure 5.31. In Figure 5.31(a) the common-gate device 𝑀2 is utilized in a cascode stage. Since a
cascode stage is often designed for large voltage gain, a typical objective is to maximize the available
output voltage swing. Consequently, the gate bias voltage of 𝑀2 is set up in the same way as in the
high-swing cascode current mirror discussed in Section 5.3.4, which means the drain-source voltage
of 𝑀1 is set to 𝑉𝐷𝑆𝑠𝑎𝑡1 plus some margin for robustness and tolerance to mismatches. A reasonable
margin is achieved by using 𝑚 = 5 (see Table 5.6) in the sizing of 𝑀3𝑏.

Figure 5.31(b) shows an example where a common-gate stage is used to interface to a photo diode.
The signal current generated in the photodiode passes through 𝑀2 and causes a proportional voltage
swing at the output. In this circuit, the output swing is usually not very large, and thus the gate
bias voltage for 𝑀2 is not tightly constrained by voltage swing requirements. Typically, the gate
voltage is set such that the photo diode is biased at a suitable reverse bias. This is accomplished
by sizing 𝑅1 and 𝑅2 appropriately.

In both of the circuits in Figure 5.31, variations in the transistor parameters (such as 𝑉𝑇 𝑛) will
cause the overall operating point of the circuits to shift. How- ever, unlike the common-source stage
of Example 5-1, these circuits are not very sensitive to such shifts. For instance, if the threshold
voltage of 𝑀2 in Figure 5.31(b) changes by 100 mV, all this means is that the reverse bias voltage
of the diode will change by approximately the same amount. If properly designed (with margins),
this won’t cause the circuit to fail or behave improperly. This strongly contrasts the situation with
the circuit of Example 5-1, where such changes in the threshold voltage can have detrimental effects
on the stage’s operation.
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5. Biasing Circuits

Figure 5.31.: Voltage biasing in two usage cases of a common-gate stage.

5.5.3. Voltage Biasing for a Common-Drain Stage

In a common-drain stage, the input and output voltages at the quiescent point are directly coupled.
As shown in Figure 5.32, 𝑉𝑂𝑈𝑇 = 𝑉𝐼𝑁–(𝑉𝑇 𝑛 + 𝑉𝑂𝑉 ). Proper voltage biasing in a common-drain
stage boils down to making sure that the input and output quiescent point voltages are compatible
with the circuits that are connecting to the stage input and output. As in a common-gate stage,
variability in transistor parameters often does not have detrimental effects as long as a proper
margin is included in the design.

In some applications, the shift between the input and output quiescent point is undesired. In this
case, a p-channel common-drain stage can be used to provide a shift in the opposite direction (see
Figure 5.33). In this circuit, 𝑀1 can be sized such that the quiescent points 𝑉𝐼𝑁 and 𝑉𝑂𝑈𝑇 are
approximately equal.

When a common-drain stage is employed primarily to shift quiescent points, the designer calls this
circuit a level shifter. Level shifters are generally useful to interface two stages that are otherwise
incompatible in terms of their ideal quiescent point out- put/input voltages.

5.6. Summary

In this chapter, we have surveyed general considerations and basic circuits related to the voltage
and current biasing of elementary transistor stages. We have seen that the variability inherent
to CMOS process technology influences the design and architecture of these support circuits and
ultimately determines whether a certain biasing scheme can be deemed practical. We analyzed the
basic current mirror and its cascoded variant with respect to their nonidealities and articulated
some of the most important design guidelines. As an example of a reference current generator, we
looked at the so-called constant-gm biasing circuit and analyzed its first-order behavior. Finally,
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Figure 5.32.: Relationship between the input and output quiescent points in a common-drain stage.
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Figure 5.33.: Back-to-back common-drain stages to realize equal input and output quiescent point
voltages.

this chapter looked into the problem of voltage biasing for the three elementary stage configura-
tions. We determined that in lieu of feedback, biasing a common-source stage properly is most
challenging and must be considered with care and knowledge of relevant process variation and
mismatch effects. While most of the presented ideas and circuits were presented in the context of
simple application examples, they generally also apply to more complex circuit designs studied in
advanced literature.

5.7. Problems

Unless otherwise stated, use the standard model parameters specified in Table 4-1 for the problems
given below. Consider only first-order MOSFET behavior and include channel-length modulation
(as well as any other second-order effects) only where explicitly stated.

P5.1 Consider the bias current generator circuit of Figure 5.25. Parameters: 𝑅 = 4𝑘Ω, 𝑊/𝐿 = 20

(a) Compute the current 𝐼𝐼𝑁 assuming nominal MOSFET parameters and supply voltage (𝑉𝐷𝐷 =
5𝑉 ).

(b) Recompute 𝐼𝐼𝑁 for slow MOSFET parameters (see Table 5.2) and 𝑉𝐷𝐷 = 4.5𝑉 . Repeat for
fast parameters and 𝑉𝐷𝐷 = 5.5𝑉 .

(c) What are the percent errors of the currents found in part (b), relative to the nominal current
computed in (a)?

P5.2 In Example 5-1, we showed analytically that changing the MOSFET parameters from nominal
to fast pushes the transistor into the triode region. Construct a load line plot that shows this
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graphically. That is, draw the output curves of the MOSFET (𝐼𝐷 versus 𝑉𝐷𝑆) for the two corner
cases and show how the intersect with the load line shifts when fast parameters are assumed. Be
sure to neglect channel length modulation.

P5.3 Set up a suitable analysis that allows you derive the values given in Table 5.5. Set up an
equation that computes 𝑉𝐷𝑆1 as a function of 𝑘 and 𝑉𝑂𝑉 .

P5.4 Set up a suitable analysis that allows you derive the values given in Table 5.6. Set up an
equation that computes 𝑉𝐷𝑆1 as a function of 𝑚 and 𝑉𝑂𝑉 .

P5.5 The circuit in Figure 5.34 can be used to achieve high-swing cascode biasing without an
extra input current branch. Given the annotated bias point voltages, what is the proper 𝑊/𝐿 ratio
for 𝑀4 that achieves the minimum output compliance voltage? Express the desired (𝑊/𝐿)4 as a
multiple 𝑘 of 𝑊/𝐿.

Figure 5.34.: P5-5

P5.6 The circuit in Figure 5.35 is called a “Sooch” cascode current mirror. It uses one single branch
for setting up all bias voltages for a high-swing cascode current mirror. Given the annotated bias
point voltages, what is the proper 𝑊/𝐿 ratio for 𝑀5 that achieves the minimum output compliance
voltage? What is the minimum required voltage across the input branch (𝑉𝐼𝑁)?

P5.7 Derive a closed-form expression for curve (iii) in Figure 5.26(b) Verify graphically that the
intersect with line (ii) corresponds to the current level given in Equation 5.33. Assume the following
parameters: 𝑚 = 4, 𝑊/𝐿 = 25, 𝑅 = 2𝑘Ω. Be sure to neglect channel-length modulation and back-
gate effect.

P5.8 For the circuit of Example 5-1, compute the proper 𝑉𝐼𝑁 that would need to be applied in
the fast parameter case such that the output bias voltage remains the same as in the nominal case.
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Figure 5.35.: P5-6
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Assume nominal conditions for supply temperature and 𝑅𝐷. In this biasing condition, what is the
voltage gain, and by which percentage has it changed relative to the nominal case?

P5.9 Figure 5.36 shows a cascode current source consisting of 𝑀1𝐴 and 𝑀1𝐵, and a single transistor
current source consisting of 𝑀2. Assume that the cascode current source is optimally biased, i.e.,
𝑉𝐵1𝐵 is chosen such that 𝑉𝐷𝑆1𝑎 = 𝑉𝐷𝑆1𝑎,𝑠𝑎𝑡 = 𝑉𝑂𝑉 1𝑎. /backAssume also that both current sources
supply the same current 𝐼𝑂. Neglect backgate effect.

(a) Find relationships between 𝑊1, 𝐿1 and 𝑊2, 𝐿2 such that both current sources have the same
parasitic output capacitance, and the same output compliance voltage 𝑉𝑂𝑚𝑖𝑛 that keeps all
the devices saturated. For simplicity, assume 𝜆 = 0 in this part of the analysis. Note: The
parasitic capacitance at the drain of 𝑀2 is given by 𝐶𝑑𝑏 + 𝐶𝑔𝑑. Similarly, assume that the
output capacitance of the cascode current source is approximately equal to 𝐶𝑑𝑏 + 𝐶𝑔𝑑 of 𝑀1𝑏.
(In the cascode current source, the effect of other capacitances referred to the output node is
negligible.)

(b) Using the result from part (a), show that the expression given below must hold. 𝑅𝑂1 and
𝑅𝑂2 are the output resistances of each current source, as indicated in Figure 5.36.

𝑅𝑂1
𝑅𝑂2

= 𝑔𝑚1𝑟𝑜1
4

(c) Calculate 𝑉𝑂𝑚𝑖𝑛, 𝑅𝑂1 and 𝑅𝑂2 for 𝐼𝑂 = 100𝜇𝐴 and (𝑊/𝐿)1 = 10𝜇𝑚/2𝜇𝑚. [Use the rela-
tionships between device sizes from part (a).]

5.10 The circuit shown in Figure 5.37 is a so-called self-biased, 𝑉𝑇 𝑛-referenced current generator.
Assuming (𝑊/𝐿)1 = 50 and (𝑊/𝐿)3 = (𝑊/𝐿)4 = (𝑊/𝐿)5, find the value for 𝑅 so that 𝐼𝑂𝑈𝑇 =
100𝜇𝐴. Assume 𝜆 = 0 and neglect backgate effect.

P5.11 For the circuit shown in Figure 5.38, ignore the backgate effect and finite output resistance
unless otherwise stated. All devices have identical widths and lengths and operate in saturation
(W/L = 50) and 𝐼𝑟𝑒𝑓 = 200𝜇𝐴.

(a) Calculate 𝑅 such that the drain-source voltage of 𝑀1 is 1.5 times its gate overdrive, i.e.,
𝑉𝐷𝑆1 = 1.5𝑉𝑂𝑉 1.

(b) Suppose that due to random mismatch, the threshold voltage of 𝑀1 is 10 mV larger than
that of all the other transistors. What is the percent error in 𝐼𝑂𝑈𝑇 caused by this mismatch?
Use appropriate small-signal approximations in your calculation.

(c) Suppose now that the threshold voltage of 𝑀2 is increased by 10 mV while all other thresholds
are at their nominal value. What is the percent error in 𝐼𝑂𝑈𝑇 caused by this mismatch? In
this calculation, include the effect of the finite output resistance for 𝑀1, assuming 𝑔𝑚𝑟𝑜 = 50.

P5.12 In the circuit of Figure 5.39, 𝑉𝐺1 is adjusted such that 𝐼𝐷1 = 50𝜇𝐴. The 𝑊/𝐿 ratio of 𝑀1
and 𝑀2 is equal to 4, while 𝑀3 is sized such that 𝑊/𝐿 = 1/2, and 𝑉𝐷𝐷 = 5𝑉 .

(a) Ignoring backgate effect, compute the minimum and maximum values of 𝑉𝐺2 for which all
transistors remain in saturation.

(b) Repeat part (a) with backgate effect included.
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Figure 5.36.: P5-9

188



5.7. Problems

Figure 5.37.: P5-10
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Figure 5.38.: P5-11

190



5.7. Problems

Figure 5.39.: P5-12

Figure 5.40.: P5-13
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P5.13 For the circuit of Figure 5.40, compute the width ratios 𝑊8/𝑊6 and 𝑊7/𝑊6 such that
𝑉𝐷𝑆8 = 𝑉𝐷𝑆7 = 𝑉𝑂𝑉 6. Assume that all channel lengths are identical. Ignore the backgate effect
and channel-length modulation.

P5.14 For the circuit of Figure 5.27, size the transistors 𝑀1 − 𝑀4 and 𝑅 such that 𝐼𝑂𝑈𝑇 = 100𝜇𝐴,
𝑉𝑂𝑉 = 300𝑚𝑉 . Assume that all channel lengths are equal to 3 �m. Neglect backgate effect and
channel length modulation.

P5.15 Design a cascode current mirror circuit using n-channel devices assuming the following
specifications. The circuit should take an input current of 10 �A and generate three outputs at 20
�A, 50 �A, and 100 �A, respectively. The output compliance voltage should be no larger than 800 mV
and the gate overdrive of the transistors should be designed as large as possible (for immunity to
mismatch), while maintaining a reasonable saturation margin. Draw the complete circuit diagram,
including all device sizes. This problem does not have a unique solution.

P5.16 Draw a layout (using any tool you prefer) for the circuit designed in Example 5-3.
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TBD.
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7. Introduction to Feedback

7.1. Preliminaries

In electronics the term feedback refers to the situation where a signal sensed (or derived or
sampled or measured) from the output port of an amplifier is returned to the input port, where
it is combined with the externally applied input signal to create a new signal to be processed by
the amplifier itself.

• when the returned signal is added to the external signal, we have positive feedback (a.k.a.
regenerative feddback)

• when the returned signal is subtracted we have negative feedback (a.k.a. degenerative feed-
back)

Negative feedback was conceived in 1928 by Harold Black.

Figure 7.1.: Block diagram of a feedback system.

7.2. Systematic Feedback Analysis Frameworks

• Two-port Analysis

– Proposed by Harold Black
– Helpful for gaining basic intuition about feedback
– Map the feedback network onto one of four topologies

∗ voltage-voltage (serie-shunt), current-voltage (shunt-shunt), voltage-current (series-
series), current-current (shunt-series), depending on the desired input/output quan-
tities
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– In practice, the feedback network “𝑏” (and possibly the forward amplifier “𝑎”) are not
unilateral, so mapping arbitrary circuits into a generic “𝑎𝑏” block diagram that uses
two-ports is not obvious

– The feedback network causes loading at the input and output of the basic amplifier
∗ model the feedback network as an ideal two-port and absorb the loading effects
into the forward amplifier. This procedure is often quite tedious.

– Some feedback circuits cannot be modeled using two-ports
∗ e.g. bias circuits with feedback loops tend to have only one port

• Return Ratio Analysis

– Proposed by Hendrik Bode
– “Asymptotic” method. It does no attempt to break the circuit into pieces
– The closed-loop properties of the feedback circuit are described in terms of the return

ratio of a dependent source in an active device
– The block diagram used to analyze the closed loop properties of the feedback circuit is

extended to handle the feedforward through the feedback network
– Often easier than two-port analysis

7.3. Negative Feedback

• Basic Idea

– trade off gain for other desirable properties

• Desirable properties

– desentisize gain
– extend the bandwidth
– control input and output impedance
– reduce NL distorsion

• Drawbacks (undesired properties)

– reduced gain
– under certain circumstances the negative feedback in an amplifier can become positive

and of such a magnitude as to cause oscillations (instability)

NOTE: it should not be implied that positive feedback always lead to instability

7.4. General negative feedback structure

Basic Terminology:

𝑠𝑖𝑛 = input signal applied to the feedback system

𝑠𝑜𝑢𝑡 = output signal from the feedback system
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Figure 7.2.: Block diagram of a negative feedback system.

𝑎 = 𝑠𝑜𝑢𝑡
𝑠𝑖

= open-loop gain = gain of “basic” amplifier = gain of feedforward amplifier

𝑏 = feedback factor

𝑎 ⋅ 𝑏 = 𝐿 = loop gain (it is always unit-less)

1 + 𝑎𝑏 = 1 + 𝐿 = amount of feedback

𝑠𝑖 ≡ 𝑠𝜖 ≡ 𝑠𝑑 = 𝑠𝑖𝑛 − 𝑠𝑓 = input to “basic” amplifier = error = difference

𝐴 = 𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

= closed-loop gain = gain of feedback system

Ideal feedback assumptions

• the feedback network does not load the basic amplifier output
• the feedback network does not load the basic amplifier input
• the feedback network is unilateral
• the basic amplifier is unilateral

Closed-loop gain expression

The feedback network measures (or samples or senses) the output signal 𝑠𝑜𝑢𝑡 and provides (returns)
a feedback signal 𝑠𝑓 (that is related to 𝑠𝑜𝑢𝑡 by the feedback factor b)

𝑠𝑜𝑢𝑡 = 𝑎 ⋅ 𝑠𝑖
𝑠𝑓 = 𝑏 ⋅ 𝑠𝑜𝑢𝑡
𝑠𝜖 ≡ 𝑠𝑑 ≡ 𝑠𝑖 = 𝑠𝑖𝑛 − 𝑠𝑓

𝐴 = 𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

= 𝑠𝑜𝑢𝑡
𝑠𝑖 + 𝑠𝑓

= 1
𝑠𝑖

𝑠𝑜𝑢𝑡
+ 𝑠𝑓

𝑠𝑜𝑢𝑡

= 1
1
𝑎 + 𝑏

= 𝑎
1 + 𝑎𝑏 =

= 1
𝑏 ⋅ 1

1 + 1/(𝑎𝑏) = 1
𝑏 ⋅ 1

1 + 1
𝐿

= 1
𝑏 ⋅ 𝐿

1 + 𝐿 ≈ 1
𝑏
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The most important benefit coming from the use of negative feedback is under the condition 𝐿 ≫
1:

• for 𝐿 ≫ 1 the actual gain 𝐴(≈ 1/𝑏) is virtually independent of the open-loop gain 𝑎. The open-
loop gain 𝑎 is typically an extremely inaccurate parameter, and varies significantly subject to
drift with temperature, supply voltage, fabrication process, and DC biasing conditions.

Although physically unattainable the limit 𝐿 → ∞ represent the ideal condition:

𝐴𝑖𝑑𝑒𝑎𝑙 = lim
𝐿→∞

𝐴 = 1
𝑏

Key result: when the loop gain 𝐿 is large, the closed loop gain 𝐴 approaches the ideal closed loop
gain 𝐴𝑖𝑑𝑒𝑎𝑙, which is equal to 1/𝑏
To achieve gain we need 𝑏 ≤ 1.
𝑏 ≤ 1 is easy to implement. We can for example use a wire (𝑏 = 1), or a resistive divider (ratiometric)
or a capacitive divider (ratiometric).

Example 1 - voltage buffer

𝑣𝑓 = 𝑣𝑜𝑢𝑡 ⇒ 𝑏 = 𝑣𝑓/𝑣𝑜𝑢𝑡 = 1
𝑣𝑜𝑢𝑡 = 𝑎 ⋅ (𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡)
𝑣𝑜𝑢𝑡(1 + 𝑎) = 𝑎 ⋅ 𝑣𝑖𝑛
𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝑎
1 + 𝑎 ≈ 1

Figure 7.3.: Block diagram of a voltage buffer.

Example 2 - non-inverting voltage amplifier

𝑏 = 𝑣𝑓
𝑣𝑜𝑢𝑡

= 𝑅1
𝑅1 + 𝑅2

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

≈ 1
𝑏 = 1 + 𝑅2

𝑅1

If we regard 1/𝐿 as an error term, then 𝐿 gives a measure of how close the actual gain 𝐴 is to the
ideal gain 𝐴𝑖𝑑𝑒𝑎𝑙 = 1/𝑏.
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7.4. General negative feedback structure

Figure 7.4.: op amp based voltage buffer

Figure 7.5.: Block diagram of a non inverting voltage amplifier (series-shunt feedback)

Figure 7.6.: op amp based non inverting voltage amplifier
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7. Introduction to Feedback

𝐴 = 1
𝑏 ⋅ 1

1 + 1
𝐿

≈ 1
𝑏 ⋅ (1 − 1

𝐿)

The % gain error between actual gain 𝐴 and ideal gain 𝐴𝑖𝑑𝑒𝑎𝑙 is usually defined as follows:

𝑔𝑎𝑖𝑛𝑒𝑟𝑟𝑜𝑟% = 100 × 𝐴 − 𝐴𝑖𝑑𝑒𝑎𝑙
𝐴𝑖𝑑𝑒𝑎𝑙

= 100 ×
𝐴𝑖𝑑𝑒𝑎𝑙 ⋅ ( 1

1 + 1/𝐿) − 𝐴𝑖𝑑𝑒𝑎𝑙

𝐴𝑖𝑑𝑒𝑎𝑙
=

= 100 × −1
1 + 𝐿 ≈ 100 × −1

𝐿

Example 3 - op amp based non inverting voltage amplifier

KLC at node 𝑣𝑜𝑢𝑡:

𝑣𝑁 − 𝑣𝑜𝑢𝑡
𝑅2

= 𝑣𝑜𝑢𝑡 − 𝑎𝐷 ⋅ (𝑣𝑖𝑛 − 𝑣𝑁)
𝑟𝑜

KCL at node 𝑣𝑁 :
𝑣𝑁 − 𝑣𝑖𝑛

𝑟𝑖
+ 𝑣𝑁

𝑅1
+ 𝑣𝑁 − 𝑣𝑜𝑢𝑡

𝑅2
= 0

Figure 7.7.: Non inverting voltage amplifier with non ideal op amp (Franco 2015)

For 𝑎𝐷 = 106, 𝑟𝑖 = 10𝑀Ω, 𝑟𝑜 = 10Ω, 𝑅1 = 20𝑘Ω and 𝑅2 = 80𝑘Ω:
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7.5. The error signal 𝑠𝜖 and the feedback signal 𝑠𝑓

𝐴𝑖𝑑𝑒𝑎𝑙 = 𝑅1 + 𝑅2
𝑅1

𝐴 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝑎𝐷 ⋅ 𝑟𝑖(𝑅1 + 𝑅2) + 𝑅1𝑟𝑜
𝑎𝐷 ⋅ 𝑅1𝑟𝑖 + 𝑟𝑜(𝑅1 + 𝑟𝑖) + 𝑅1𝑅2 + 𝑟𝑖(𝑅1 + 𝑅2) = 4.999975

𝑔𝑎𝑖𝑛𝑒𝑟𝑟𝑜𝑟 = 4.999975 − 5
5 = −5 ⋅ 10−6 = −5𝑝𝑝𝑚

The exact analysis is very tedious. A better way to obtain the same insight is to use the simpler
approach shown in example 4.

7.5. The error signal 𝑠𝜖 and the feedback signal 𝑠𝑓

From Figure 7.2

𝑠𝜖 = 𝑠𝑜𝑢𝑡
𝑎 = 𝐴 ⋅ 𝑠𝑖𝑛

𝑎 = �𝑎
1 + 𝐿 ⋅ 𝑠𝑖𝑛

�𝑎
= 𝑠𝑖𝑛

1 + 𝐿

also

𝑠𝑓 = 𝑏 ⋅ 𝑠𝑜𝑢𝑡 = 𝑏 ⋅ 𝐴 ⋅ 𝑠𝑖𝑛 = �𝑏 ⋅ 1
�𝑏

1
1 + 1/𝐿 ⋅ 𝑠𝑖𝑛

= 𝑠𝑖𝑛
1 + 1/𝐿

These results show that for a large loop gain (ideally for 𝐿 → ∞), the error signal becomes very small
(ideally 𝑠𝜖 → 0), causing the feedback signal 𝑠𝑓 to closely follow the input signal 𝑠𝑖𝑛 (𝑠𝑓 → 𝑠𝑖𝑛).

If the feedback signal closely tracks the input signal, then the output signal is also a close “replica”
of the input signal, and therefore feedback is also effective in reducing distorsion due to small
signals. Low frequency distorsion is caused by changes in the slope of the basic-amplifier transfer
characteristic (i.e. changes in the small signal gain of the basic-amplifier).

7.6. Benefits of negative feedback

7.6.1. Gain Desensitivity

To investigate the effect that a variation on the open-loop gain 𝑎 causes on the closed-loop gain 𝐴
we differentiate 𝐴 w.r.t. 𝑎

𝐴 = 𝑎
1 + 𝑎𝑏
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7. Introduction to Feedback

𝑑𝐴
𝑑𝑎 = 1 + 𝑎𝑏 − 𝑎𝑏

(1 + 𝑎𝑏)2 = 1
(1 + 𝑎𝑏)2

Δ𝐴 = Δ𝑎
(1 + 𝑎𝑏)2

Δ𝐴
𝐴 = Δ𝑎

𝐴 ⋅ 1
(1 + 𝑎𝑏)2 = Δ𝑎

𝑎
1 + 𝑎𝑏

⋅ 1
(1 + 𝑎𝑏)2 = Δ𝑎/𝑎

(1 + 𝑎𝑏)

Thanks to feedback, a fractional change in the gain of the basic amplifier is reduced by a factor
1 + 𝐿 = 1 + 𝑎𝑏 in the closed-loop. Conceptually, the loop gain 𝐿 can be be made arbitrarily
large. The loop gain is a key parameter and as we will see later it plays an important role also in
bandwidth and impedance calculations.

7.6.2. Effect of feedback on non-linearity

Amplifiers are made up of transistors. Since, transistors are non-linear devices, the transfer chara-
teristic of any practical amplifier is non-linear. Assume a basic amplifier that besides the desired
linear relationship, also exhibits a quadratic and cubic relationship between its input and output.

Figure 7.8.: Effect of negative feedback on non-linearity

𝑣𝑜𝑢𝑡 = 𝑎1(𝑣𝑖𝑛 − 𝑏𝑣𝑜𝑢𝑡) + 𝑎2(𝑣𝑖𝑛 − 𝑏𝑣𝑜𝑢𝑡)2 + 𝑎3(𝑣𝑖𝑛 − 𝑏𝑣𝑜𝑢𝑡)3 (7.1)

𝑣𝑜𝑢𝑡 = 𝐴1𝑣𝑖𝑛 + 𝐴2𝑣2
𝑖𝑛 + 𝐴3𝑣3

𝑖𝑛 + ... (7.2)

Substituting Equation 7.2 into Equation 7.1 we get:

𝑣𝑜𝑢𝑡 =𝑎1(𝑣𝑖𝑛 − 𝑏𝐴1𝑣𝑖𝑛 − 𝑏𝐴2𝑣2
𝑖𝑛 − 𝑏𝐴3𝑣3

𝑖𝑛 − ...)+
𝑎2(𝑣𝑖𝑛 − 𝑏𝐴1𝑣𝑖𝑛 − 𝑏𝐴2𝑣2

𝑖𝑛 − 𝑏𝐴3𝑣3
𝑖𝑛 − ...)2+

𝑎3(𝑣𝑖𝑛 − 𝑏𝐴1𝑣𝑖𝑛 − 𝑏𝐴2𝑣2
𝑖𝑛 − 𝑏𝐴3𝑣3

𝑖𝑛 − ...)3

and equating back into Equation 7.2:

for the linear term

𝐴1𝑣𝑖𝑛 = 𝑎1𝑣𝑖𝑛 − 𝑎1𝑏𝐴1𝑣𝑖𝑛 ⇔ 𝐴1(1 + 𝑎1𝑏) = 𝑎1

𝐴1 = 𝑎1
1 + 𝑎1𝑏

(7.3)
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7.6. Benefits of negative feedback

or:
𝐴1 = 𝑎1 − 𝑎1𝑏𝐴1 ⇔ 𝐴1 = 𝑎1(1 − 𝑏𝐴1) ⇔

1 − 𝑏𝐴1 = 𝐴1
𝑎1

= 1
1 + 𝑎1𝑏

(7.4)

for the quadratic term

𝐴2𝑣2
𝑖𝑛 = −𝑎1𝑏𝐴2𝑣2

𝑖𝑛 + 𝑎2 (𝑣2
𝑖𝑛 + 𝑏2𝐴2

1𝑣2
𝑖𝑛 − 2𝑏𝐴1𝑣2

𝑖𝑛) ⇔

𝐴2(1 + 𝑎1𝑏) = 𝑎2(1 − 𝑏𝐴1)2 ⇔ 𝐴2 = 𝑎2
(1 − 𝑏𝐴1)2

1 + 𝑎1𝑏 ⇔

𝐴2 = 𝑎2
(1 + 𝑎1𝑏)3

(7.5)

for the cubic term

𝐴3 ⋅ 𝑣3
𝑖𝑛 = −𝑎1𝑏𝐴3𝑣3

𝑖𝑛 + 𝑎3(1 − 𝑏𝐴1)3𝑣3
𝑖𝑛 − 2𝑎2𝑏𝐴2(1 − 𝑏𝐴1)𝑣3

𝑖𝑛 ⇔
𝐴3(1 + 𝑎1𝑏) = 𝑎3(1 − 𝑏𝐴1)3 − 2𝑎2𝑏𝐴2(1 − 𝑏𝐴1) ⇔

𝐴3 = 𝑎3(1 − 𝑏𝐴1)3 − 2𝑎2𝑏𝐴2(1 − 𝑏𝐴1)
(1 + 𝑎1𝑏) ⇔

𝐴3 = 𝑎3
(1 + 𝑎1𝑏)4 − 2𝑎2

2𝑏
(1 + 𝑎1𝑏)5

(7.6)

The linear term 𝑎1 (as expected) is reduced by 1 + 𝐿, where 𝐿 ≡ 𝑎1𝑏

The quadratic term 𝑎2 is reduced by (1 + 𝐿)3

The cubic term 𝑎3 is reduced by (1 + 𝐿)4, but ther is also an extra term due to the interaction with
the second-order term 𝑎2

If at different signal levels, the basic amplifier’s small-signal gain varies, since feedback reduces the
overall gain variations w.r.t. the gain variations of the basic amplifier, then feedback also reduces
distorsion.

Note:

• feedback reduces distorsion without reducing the output voltage range. The overall gain is
reduced, but additional gain can be provided with a preamplifier that operates with smaller
signal swings, and therefore less distorsion.

• feedback does not help with saturation. In the case an amplifier’s output shows hard satu-
ration (i.e., the output become independent of the input), the incremental gain of the basic
amplifier → 0, so the amount of feedback also → 0, and as a result negative feedback cannot
improve the situation.
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7.6.3. Effect of feedback on bandwidth

As an example, assume the transfer function of the basic amplifier is the following:

𝑎(𝑗𝜔) = 𝑎0

1 + 𝑗𝜔
𝜔𝑝

Then, the closed-loop transfer function is

𝐴(𝑗𝜔) = 𝑎(𝑗𝜔)
1 + 𝑎(𝑗𝜔) ⋅ 𝑏 = 𝑎0

1 + 𝑎0𝑏 ⋅ 1
1 + 𝑗𝜔

𝜔𝑝
⋅ 1

(1 + 𝑎0𝑏)

The gain is reduced by 1 + 𝐿0, but the bandwidth is increased by 1 + 𝐿0, where 𝐿0 = 𝑎0𝑏.
The product of gain and bandwidth remains constant.

Figure 7.9.: Gain magnitude vs. frequency for the basic amplifier and the feedback amplifier

7.6.4. Effect of feedback on input/output resistances

In actual applications the input and output resistances (a.k.a. terminal resistances) of the amplifier
play a key role. When an amplifier is driven by a non ideal source and drives an output load, the
input resistance forms a divider with the source’s resistance, and the output resistance forms a

206



7.6. Benefits of negative feedback

divider with the load, therefore reducing the overall gain from source to load. This reduction is
usually referred as loading effect. Negative feedback modifies the terminal resistances in ways that
tend to reduce the impact of loading.

7.6.4.1. Series-shunt (voltage-voltage) feedback configuration - Voltage Amplifier

Let’s consider the application of negative feedback around a voltage amplifier. In this case feedback
is performed sampling the output voltage and then feeding back a voltage that is a scaled version
of the output voltage “into” the external input voltage source driving the amplifier. Note that the
operation of voltage sensing at the output is performed in parallel, or shunt (when we measure
a voltage we place the voltmeter in parallel, never in series), while to combine the external input
voltage source and the voltage returned by the feedback network we connect them in series (to
connect two voltage sources we place them in series, never in parallel).

To focus on the effect of negative feedback on 𝑟𝑖 and 𝑟𝑜 of the basic amplifier, we assume there is
no loading effect on both ports of the basic amplifier. To neglect loading at the input’s of the basic
amplifier, we assume that the sources 𝑣𝑖𝑛 and 𝑏𝑣𝑜𝑢𝑡 have zero series resistances. To neglect loading
at the output port of the basic amplifier, we assume the output port of the basic amplifier is left
open and the input port of the feedback network has infinite resistance.

Note: for the series-shunt feeback configuration, b is unitless.

Figure 7.10.: The ideal series-shunt configuration or voltage amplifier (Franco 2015)
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It can be shown:

𝑅𝑖𝑛 = 𝑣𝑥
𝑖𝑥

= 𝑟𝑖(1 + 𝐿)

𝑅𝑜𝑢𝑡 = 𝑣𝑡
𝑖𝑡

= 𝑟𝑜
1 + 𝐿

For 𝐿 → ∞ the series-shunt configuration gives 𝑅𝑖𝑛 → ∞ and 𝑅𝑜𝑢𝑡 → 0

7.6.4.2. Shunt-shunt (current-voltage) feedback configuration - Transimpedance Amplifier

Let’s consider the application of negative feedback around a transimpedance amplifier. In this
case feedback is performed sampling the output voltage and then feeding back a current that is a
scaled version of the output voltage “into” the external input current source driving the amplifier.
Note that to combine the external input current source and the current returned by the feedback
network we connect them in parallel or shunt (to connect two current sources we place them in
parallel, never in series).

To neglect loading at the input of the basic amplifier, we assume that the sources 𝑖𝑖𝑛 and 𝑏𝑣𝑜𝑢𝑡 have
infinite parallel resistances. To neglect loading at the output port of the basic amplifier, we assume
the output port of the basic amplifier is left open and the input port of the feedback network has
infinite resistance.

Note: for the shunt-shunt feeback configuration, b has dimensions of 1/Ω.

It can be shown:

𝑅𝑖𝑛 = 𝑟𝑖
1 + 𝐿

𝑅𝑜𝑢𝑡 = 𝑟𝑜
1 + 𝐿

For 𝐿 → ∞ the shunt-shunt configuration gives 𝑅𝑖𝑛 → 0 and 𝑅𝑜𝑢𝑡 → 0

7.6.4.3. Series-series (voltage-current) feedback configuration - Transconductance Amplifier

Let’s consider the application of negative feedback around a transconductance amplifier. In this
case feedback is performed sampling the output current and then feeding back a voltage that is a
scaled version of the output current “into” the external input voltage source driving the amplifier.
Note that the operation of current sensing at the output is performed in series, or shunt (when we
measure a current we place the ampmeter in series, never in parallel).

To neglect loading at the input of the basic amplifier, we assume that the sources 𝑣𝑖𝑛 and 𝑏𝑖𝑜𝑢𝑡 have
zero series resistances. To neglect loading at the output port of the basic amplifier, we assume the
output port of the basic amplifier is shorted and the input port of the feedback network has zero
resistance.
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7.6. Benefits of negative feedback

Figure 7.11.: (a) test circuit for the calculation of the input impedance and (b) test circuit for the
calculation of the output impedance
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Figure 7.12.: The ideal shunt-shunt configuration or transimpedance amplifier (Franco 2015)

Figure 7.13.: The ideal series-series configuration or transconductance amplifier (Franco 2015)
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7.6. Benefits of negative feedback

Note: for the series-series feedback configuration, b has dimensions of Ω.

It can be shown:

𝑅𝑖𝑛 = 𝑟𝑖(1 + 𝐿)

𝑅𝑜𝑢𝑡 = 𝑟𝑜(1 + 𝐿)

For 𝐿 → ∞ the series-series configuration gives 𝑅𝑖𝑛 → ∞ and 𝑅𝑜𝑢𝑡 → ∞

7.6.4.4. Shunt-series (current-current) feedback configuration - Current Amplifier

Let’s consider the application of negative feedback around a current amplifier. In this case feedback
is performed sampling the output current and then feeding back a current that is a scaled version
of the output current “into” the external input current source driving the amplifier.

To neglect loading at the input of the basic amplifier, we assume that the sources 𝑖𝑖𝑛 and 𝑏𝑖𝑜𝑢𝑡 have
infinite parallel resistances. To neglect loading at the output port of the basic amplifier, we assume
the output port of the basic amplifier is shorted and the input port of the feedback network has
zero resistance.

Note: for the shunt-series feedback configuration, b is unitless.

Figure 7.14.: The shunt-series configuration or current amplifier (Franco 2015)

It can be shown:
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𝑅𝑖𝑛 = 𝑟𝑖
1 + 𝐿

𝑅𝑜𝑢𝑡 = 𝑟𝑜(1 + 𝐿)

For 𝐿 → ∞ the shunt-series configuration gives 𝑅𝑖𝑛 → 0 and 𝑅𝑜𝑢𝑡 → ∞

7.7. Feedback analysis of op amp circuits

In typical op amp circuits 𝑟𝑖 and 𝑟𝑜 are negligible compared to the resistances used in the feedback
network.

7.7.1. Non Inverting configuration

Figure 7.15.: Block diagram of negative feedback system.

For identifying 𝑎 and 𝑏 directly from the circuit, we can set 𝑣𝑖𝑛 = 0 and note that with 𝑣𝑖𝑛 = 0

𝑖𝑜𝑢𝑡 = 𝑣𝑜𝑢𝑡
𝑅2 + 𝑅1||𝑟𝑖

= 𝑎𝐷𝑣𝐷
𝑟𝑜 + 𝑅2 + 𝑅1||𝑟𝑖

𝑣𝑓 = −𝑣𝐷 = 𝑖𝑜𝑢𝑡 ⋅ (𝑅1||𝑟𝑖)

𝑣𝑜𝑢𝑡 = 𝑖𝑜𝑢𝑡 ⋅ (𝑅2 + 𝑅1||𝑟𝑖)

So,

𝑏 = 𝑣𝑓
𝑣𝑜𝑢𝑡

= 𝑅1||��𝑟𝑖
𝑅1||��𝑟𝑖 + 𝑅2

≈ 𝑅1
𝑅1 + 𝑅2

𝑎 = 𝑣𝑜𝑢𝑡
𝑣𝐷

= 𝑎𝐷 ⋅ 𝑅2 + 𝑅1||��𝑟𝑖
𝑅2 + 𝑅1||��𝑟𝑖 +��𝑟𝑜

≈ 𝑎𝐷

In practice, for identifying 𝑎 and 𝑏, it is better to think directly in terms of loop gain 𝐿

𝐿 = 𝑎𝑏 = −𝑣𝑟
𝑣𝑡
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Figure 7.16.: Non inverting op amp amplifier (Franco 2015).

The minus sign is due to the − at the summing node

Figure 7.17.: Breaking the Loop.

Note: To find the loop gain, it is best to break the loop at the opamp’s voltage controlled voltage
source. This approach preserves all of the node impedances in the circuit.

𝐿 = −𝑣𝑟
𝑣𝑡

= 𝑎𝐷 ⋅ 𝑅1||��𝑟𝑖
𝑅1||��𝑟𝑖 + 𝑅2 +��𝑟𝑜

𝐴 = 𝐴𝑖𝑑𝑒𝑎𝑙
𝐿

1 + 𝐿 ≈ 𝐴𝑖𝑑𝑒𝑎𝑙(1 − 1
𝐿)

𝑔𝑎𝑖𝑛𝑒𝑟𝑟𝑜𝑟 ≈
𝐴𝑖𝑑𝑒𝑎𝑙(1 − 1

𝐿) − 𝐴𝑖𝑑𝑒𝑎𝑙

𝐴𝑖𝑑𝑒𝑎𝑙
= − 1

𝐿
The value of 𝐴𝑖𝑑𝑒𝑎𝑙 is already known from the ideal op amp analysis
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Figure 7.18.: Non inverting op amp amplifier with 𝑣𝑖𝑛 nulled and the loop broken at the opamp’s
vcvs.

Infinite opamp gain (𝑎𝐷 → ∞) implies infinite open-loop gain (𝑎 ≈ 𝑎𝐷) and therefore infinite loop
gain 𝐿 = 𝑎𝑏

𝐴𝑖𝑑𝑒𝑎𝑙 = 1
𝑏 ≈ 1 + 𝑅2

𝑅1

Example 4 - non inverting op amp based voltage amplifier

For 𝑎𝐷 = 106, 𝑟𝑖 = 10𝑀Ω, 𝑟𝑜 = 10Ω, 𝑅1 = 20𝑘Ω and 𝑅2 = 80𝑘Ω:

𝐿 = −𝑣𝑟
𝑣𝑡

= 𝑎𝐷 ⋅ 𝑅1||��𝑟𝑖
𝑅1||��𝑟𝑖 + 𝑅2 +��𝑟𝑜

≈ 106 20𝑘Ω
20𝑘Ω + 80𝑘Ω

The exact value of 𝐿 is 199600, so the above approximation has 0.2% error.

𝐴 = 5 ⋅ 200000
1 + 200000 = 4.999975

𝑔𝑎𝑖𝑛𝑒𝑟𝑟𝑜𝑟 ≈ − 1
200000 = −5𝑝𝑝𝑚

This is the same result as before, except we did not have to go through a tedious nodal analysis
and plug in numbers in a “high entropy” espression.

What if the op amp gain changes ?

If the gain is cut in half :
𝐴 = 5 ⋅ 100000

1 + 100000 = 4.999950

If the gain doubles:
𝐴 = 5 ⋅ 400000

1 + 400000 = 4.999988
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7.7. Feedback analysis of op amp circuits

• The closed loop gain (𝐴) is immune to large variations in the op amp gain
• The voltage gain of the overall circuit (= closed loop gain) is primarily defined by the divider

ratio of the resistive feedback

– A quantity that we can control very precisely

7.7.2. Inverting configuration

In this configuration the resistors affect both the input and the feedback path.

Figure 7.19.: Inverting op amp amplifier. (Franco 2015})

It is not clear how to map the circuit into the block diagram representation. The flow of the signal
through the circuit elements is not unidirectional.

Figure 7.20.: Block diagram of negative feedback system.

We can still try to make things work using superposition.
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7. Introduction to Feedback

Figure 7.21.: Breaking the loop (𝑣𝑓 = 0)

Figure 7.22.: Breaking the loop (𝑣𝑖𝑛 = 0)

Figure 7.23.: op amp based inverting amplifier with break in the loop (𝑣𝑓 = 0)
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7.7. Feedback analysis of op amp circuits

𝑎 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= − 𝑅2
𝑅1 + 𝑅2

⋅ 𝑎𝐷

Figure 7.24.: op amp based inverting amplifier with break in the loop (𝑣𝑖𝑛 = 0)

−𝑎𝑏 = 𝑣𝑜𝑢𝑡
𝑣𝑡𝑒𝑠𝑡

= − 𝑅1
𝑅1 + 𝑅2

⋅ 𝑎𝐷

Note: the loop gain is the same as the one of the non-inverting configuration.

𝐴𝑖𝑑𝑒𝑎𝑙 = 1
𝑏 = 𝑎

𝑎𝑏 = −𝑅2
𝑅1

Beyond 𝐴𝑖𝑑𝑒𝑎𝑙 the only other value we need to know is the loop gain 𝐿 = 𝑎𝑏 so we can compute
the deviation from ideality

7.7.3. Comparison between non-inverting and inverting topology

Figure 7.25.: comparison between inverting and non-inverting topology

The following model is valid for both topologies:

In summary op amp circuits can be analyzed as follows:
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Figure 7.26.: Block diagram model valid for both topologies.

• Find 𝐴𝑖𝑑𝑒𝑎𝑙 using nodal analysis, assuming infinite op amp gain
• Find the loop gain to compute the deviation from the ideal case

– This is usually straight forward, especially when there are ideal breakpoints that do not
alter the impedance loading around the loop

– The best breakpoint for a voltage amplifier is right at the controlled voltage source

𝐴 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝐴𝑖𝑑𝑒𝑎𝑙 ⋅ 𝐿
𝐿 + 1 = 𝐴𝑖𝑑𝑒𝑎𝑙 ⋅ 1

1 + 1
𝐿

7.7.4. The four feedback configurations using op amps

Sometimes the operations of output sensing and input returning are not obvious. Even though
strictly speaking the op amp is a voltage amplifier, it can be used in any of the four feedback
configurations.

7.7.4.1. Series-Shunt (voltage-voltage) configuration (Voltage Amplifier)

For 𝑎𝑣 → ∞ this circuit gives:

𝐴𝑣 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 1
𝑏 = 1 + 𝑅2

𝑅1

𝑅𝑖𝑛 → ∞

𝑅𝑜𝑢𝑡 → 0

This circuit is the popular non inverting op amp based voltage amplifier.
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7.7. Feedback analysis of op amp circuits

Figure 7.27.: Series-shunt configuration: 𝑏 = 𝑣𝑓
𝑣𝑜𝑢𝑡

= 𝑅1
𝑅1 + 𝑅2

Figure 7.28.: Shunt-shunt configuration: 𝑏 = 𝑖𝑓
𝑣𝑜𝑢𝑡

= − 1
𝑅
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7.7.4.2. Shunt-Shunt (current-voltage) configuration (Transimpedance Amplifier)

For 𝑎𝑣 → ∞ this circuit (= TIA) gives:

𝑅𝑚 = 𝑣𝑜𝑢𝑡
𝑖𝑖𝑛

= 1
𝑏 = −𝑅

𝑅𝑖𝑛 → 0
𝑅𝑜𝑢𝑡 → 0
Even though the shunt-shunt configuration is a TIA, it forms the basis of the popular inverting op
amp based voltage amplifier.

Figure 7.29.: inverting op amp based voltage amplifier

This becomes more evident if we perform a source transformation to convert the voltage source 𝑣𝑖𝑛
in Figure 7.29 into a current source 𝑖𝑖𝑛 = 𝑣𝑖𝑛

𝑅1
as shown in Figure 7.30.

For the inverting voltage amplifier as 𝑎𝑣 → ∞

𝐴𝑣 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝑣𝑜𝑢𝑡
𝑖𝑖𝑛

× 𝑖𝑖𝑛
𝑣𝑖𝑛

= −𝑅2
𝑅1

𝑅𝑖𝑛 = 𝑅1

𝑅𝑜𝑢𝑡 → 0

7.7.4.3. Series-Series (voltage-current) configuration (Transconductance Amplifier)

For 𝑎𝑣 → ∞

𝐺𝑚 = 𝑖𝑜𝑢𝑡
𝑣𝑖𝑛

= 1
𝑏 = 1

𝑅
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7.7. Feedback analysis of op amp circuits

Figure 7.30.: inverting op amp based voltage amplifier with the input voltage source transformed
into a current source

Figure 7.31.: series-series configuration: 𝑏 = 𝑣𝑓
𝑖𝑜𝑢𝑡

= 𝑅
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𝑅𝑖𝑛 → ∞

𝑅𝑜𝑢𝑡 → ∞

7.7.4.4. Shunt-Series (current-current) configuration (Current Amplifier)

Figure 7.32.: shunt-series configuration: 𝑏 = 𝑖𝑓
𝑖𝑜𝑢𝑡

= − 𝑅1
𝑅1 + 𝑅2

= − 1
1 + 𝑅2/𝑅1

For 𝑎𝑣 → ∞

𝐴𝑖 = 𝑖𝑜𝑢𝑡
𝑖𝑖𝑛

= 1
𝑏 = −(1 + 𝑅2

𝑅1
)

𝑅𝑖𝑛 → 0

𝑅𝑜𝑢𝑡 → ∞
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7.8. Return Ratio Analysis

7.8. Return Ratio Analysis

7.8.1. Closed-loop gain using return ratio

Given a feedback amplifier, with a controlled source of value k (see Figure 7.33), the closed loop
gain can be derived as shown in (Gray et al. 2009b):

𝐴 = 𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

= 𝐴∞ ⋅ 𝑇
1 + 𝑇 + 𝑑

1 + 𝑇

Figure 7.33.: Feedback amplifier: return ratio framework to derive the closed-loop gain

Visually, the expression for the closed loop gain can be summarized through the block diagram in
Figure 7.34:

(𝑠𝑖𝑛 − 𝑠𝑜𝑢𝑡
𝐴∞

) ⋅ 𝑇 𝐴∞ + 𝑑 ⋅ 𝑠𝑖𝑛 = 𝑠𝑜𝑢𝑡

𝐴 = 𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

= 𝐴∞ ⋅ 𝑇
1 + 𝑇 + 𝑑

1 + 𝑇

Figure 7.34.: Block diagram for closed-loop gain using return ratio framework

The three terms needed to find the closed loop gain (𝐴∞, 𝑇 , 𝑑) are all directly computable and
measurable (SPICE), and do not rely on any idealization of the feedback network.
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7. Introduction to Feedback

In practical circuits the feedback network loads both the input and output of the amplifier, so
idealizing its effect is not realistic. With two-port analysis incorporating the effect of loading
without the use of suitable approximations/idealizations of the feedback network becomes extremely
tedious.

The return ratio analysis does not try to identify the transfer function of the basic amplifier and
the feedback network separately. It aims to identify directly the gain around the feedback loop.
From the loop gain of a circuit, we can determine:

• stability
• closed-loop gain
• nodal impedances

The return ratio analysis can be applied to any arbitrary feedback circuit, independent of topology
and port structure.

The return ratio for a dependent source in a feedback loop is found as follows:

1. Set all independent sources to zero
2. Identify a dependent source in the feedback loop that you want to analyze and break the

loop by disconnecting the dependent source from the rest of the circuit. Leave the dependent
source open-circuited if it is of the voltage type, or short-circuited if it is of the current-type

3. On the side of the break that is not connected to the dependent source, inject an independent
test source 𝑠𝑡 of the same sign and type as the dependent source

4. Find the return signal 𝑠𝑟, generated at the controlled source that was disconnected
5. The return ratio 𝑇 for the dependent source is 𝑇 = −𝑠𝑟/𝑠𝑡

• Provided that we have chosen a controlled source that breaks the loop globally, the
return ratio of the dependent source is equal to the loop gain of the circuit.

• For the stabilty analysis of a feedback circuit we must have the loop gain not just any
return ratio. Unless, we have a single loop feedback circuit, the return ratios computed
for different dependent sources are not necessarily equal (Hurst 1991), so in general, the
return ratio is not a global property of the loop (Hajimiri 2023).

The direct feedthrough 𝑑 is given by:

𝑑 = 𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

|𝑘=0

which is the transfer function from input to output evaluated for k = 0. In other words, the direct
feedthrough 𝑑 is the signal transfer from input to output through the passive elements, it represent
a signal path from input to output that goes around rather than through the controlled source k.

The value of 𝐴∞ is the closed loop gain when the feedback circuit is ideal (that is when 𝑇 → ∞).
If 𝑇 → ∞ then 𝐴 = 𝐴∞, because 𝑇

1 + 𝑇 → 1 and 𝑑
1 + 𝑇 → 0

Since letting 𝑘 → ∞ causes 𝑇 → ∞ (Gray et al. 2009b) the value of 𝐴∞ can be easily found by
evaluating

𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

|𝑘→∞
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7.8. Return Ratio Analysis

When 𝑘 → ∞, the controlling signal 𝑠𝑖𝑐 for the dependent source must be zero for the output of
the controlled source to be finite. The controlled source output will be finite if the feedback is
negative.

The key difference between the return ratio analysis and the two-port analysis can be seen comparing
Figure 7.34 and Figure 7.35 In the two-port analysis all forward signal transmission is lumped in
the block 𝑎. In the return ratio analysis, there are two forward signal paths: one path (𝑑) for the
feedback network and another path (𝑇 𝐴∞) for the forward gain.

Figure 7.35.: Block diagram model for closed-loop gain using the two-port framework

Example 5 - common source stage with current source biasing

Consider the circuit in Figure 7.36 and its AC equivalent model in Figure 7.37

Current source biasing in this circuit doesn’t work without feedback setting the drain voltage.

Given the finite gain and the nature of the impedances of the MOS, in this circuit is hard to
decouple a(s) and b(s), so using the two-port analysis is not a good option.

𝐴(𝑠) = 𝑎(𝑠)
1 + 𝑎(𝑠)𝑏(𝑠)

In this case, since the circuit is not very complex we can use exact nodal analysis.

𝑣𝑖𝑛 − 𝑣𝑥
𝑅1

+ 𝑣𝑜𝑢𝑡 − 𝑣𝑥
𝑅2

= 0 ⇔ 𝑣𝑖𝑛
𝑅1

− ( 1
𝑅1

+ 1
𝑅2

) ⋅ 𝑣𝑥 + 𝑣𝑜𝑢𝑡
𝑅2

= 0 (7.7)

𝑣𝑥 − 𝑣𝑜𝑢𝑡
𝑅2

= 𝑔𝑚𝑣𝑥 ⇔ 𝑣𝑥 = 𝑣𝑜𝑢𝑡
1 − 𝑔𝑚𝑅2

(7.8)

Substituting Equation 7.7 in Equation 7.8:

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 1 − 𝑔𝑚𝑅2
1 + 𝑔𝑚𝑅1

= −𝑅2
𝑅1

⎛⎜⎜⎜
⎝

1 − 1
𝑔𝑚𝑅2

1 + 1
𝑔𝑚𝑅1

⎞⎟⎟⎟
⎠

If the 𝑔𝑚𝑅 terms are much greater than 1, the result is the same as the op amp solution.

Let’s now confirm that return ratio analysis produces the same result.

Return ratio calculation
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Figure 7.36.: Common source with current-source biasing

Figure 7.37.: AC equivalent model of the feedback circuit in Figure 7.36
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7.8. Return Ratio Analysis

Figure 7.38.: return ratio calculation

𝑣𝑔𝑠 = −𝑅1𝑖𝑡

𝑖𝑟 = 𝑔𝑚𝑣𝑔𝑠 = −𝑔𝑚𝑅1𝑖𝑡

𝑖𝑟
𝑖𝑡

= −𝑔𝑚𝑅1

𝑇 ≡ −𝑖𝑟
𝑖𝑡

= 𝑔𝑚𝑅1

Ideal closed loop gain calculation

𝐴∞ is the transfer function when the gain element of the controlled source becomes ∞. In our case
this corresponds to 𝑔𝑚 → ∞. If the gain element becomes ∞ the controlling signal must be zero.
In our case this correspond to the input node 𝑣𝑔𝑠 = 0, therefore:

Figure 7.39.: Ideal closed loop gain calculation

𝑣𝑖𝑛
𝑅1

= −𝑣𝑜𝑢𝑡
𝑅2

⇔ 𝐴∞ = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= −𝑅2
𝑅1
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Figure 7.40.: Direct feedthrough calculation

Direct feedtrough (d) calculation

𝑑 is defined as the transfer function when the gain element becomes zero. In our case for 𝑔𝑚 = 0

𝑣𝑜𝑢𝑡 = 𝑣𝑖𝑛 ⇔ 𝑑 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 1

In summary:

• 𝑇 = 𝑔𝑚𝑅1

• 𝐴∞ = −𝑅2
𝑅1

• 𝑑 = 1

Therefore, as expected the closed loop gain computed using the return ratio framework matches
with the result obtained using exact nodal analysis:

𝐴 = 𝐴∞ ⋅ 𝑇
1 + 𝑇 + 𝑑

1 + 𝑇
= −𝑅2

𝑅1
⋅ 𝑔𝑚𝑅1

1 + 𝑔𝑚𝑅1
+ 1

1 + 𝑔𝑚𝑅1

= 1 − 𝑔𝑚𝑅2
1 + 𝑔𝑚𝑅1

Example 6 - constant-𝑔𝑚 reference

In this example, we will use the return ratio framework to evaluate the stability of the bias circuit in
Figure 7.41. The bias circuit in Figure 7.41 is know as constant-𝑔𝑚 reference or Δ𝑉𝐺𝑆 reference.

Note: this circuit has only one-port so it cannot be analyzed using the two-ports framework.

𝐼𝑅𝐸𝐹 ⋅ 𝑅2 = 𝑉𝐺𝑆1 − 𝑉𝐺𝑆2 = 𝑉𝑂𝑉 1 − 𝑉𝑂𝑉 2

≈ 𝑉𝑂𝑉 1 (1 − 1√𝑚)
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Figure 7.41.: Constant-𝑔𝑚 reference

𝐼𝑅𝐸𝐹 ≈
𝑉𝑂𝑉 1 (1 − 1√𝑚)

𝑅2

• This circuit has positive feedback.
• A positive feedback system is stable only if its loop gain is less than 1 (𝑇 < 1)

To identify which dependent source to use for computing the loop gain 𝑇 of the circuit, the feedback
loop we break must be global.

• 𝑀2 and 𝑅2 degeneration, form a local feedback loop, so 𝑀2 cannot be used to break the main
loop

• 𝑀1 and 𝑀4 are diode-connected; their transcondactance elements are equivalent to a resis-
tance 1/𝑔𝑚, so cannot be used to break the main loop

• 𝑀3 is the only “normal” CS gain stage in the circuit, so it is the only element that can be
used to break the main loop

In general, the return ratio of CG, CD, or degenerated CS cannot be used to find the
“global” loop gain of a circuit.

To compute the loop gain 𝑇 of the circuit, it is convenient to first unroll and linearize the AC
equivalent model in Figure 7.42:

and then insert the test source:

𝑖𝑟 = 𝑔𝑚3𝑣4

𝑖𝑡 = −𝑔𝑚1𝑣1
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7. Introduction to Feedback

Figure 7.42.: AC equivalent model of the constant-𝑔𝑚 bias circuit

Figure 7.43.: Unrolled AC equivalent model for the constant-𝑔𝑚 bias circuit
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7.8. Return Ratio Analysis

Figure 7.44.: Small signal equivalent model for the constant-𝑔𝑚 bias circuit, (a) red: circuit features
that make 𝑠𝑡 insertion not possible, (b) blue: best place for 𝑠𝑡 insertion

Figure 7.45.: Computing the return ratio for the constant-𝑔𝑚 bias circuit
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𝑣4 = −𝑖2 (1/𝑔𝑚4)
𝑖2 = 𝑔𝑚2𝑣2

𝑣1 = 𝑣2 + 𝑔𝑚2𝑣2𝑅2 ⇔ 𝑣2 = 𝑣1
(1 + 𝑔𝑚2𝑅2)

Putting the pieces together:

𝑖𝑟
𝑖𝑡

= (−𝑔𝑚3
𝑔𝑚1

) (−𝑔𝑚2
𝑔𝑚4

) ( 1
1 + 𝑔𝑚2𝑅2

)

Therefore: 𝑇 = −𝑖𝑟
𝑖𝑡

= − (𝑔𝑚3
𝑔𝑚1

) (𝑔𝑚2
𝑔𝑚4

) ( 1
1 + 𝑔𝑚2𝑅2

)

The resulting return ratio is negative (i.e. the feedback is definitely not negative, even at zero
frequency). The challange is to keep the magnitude of the return ratio less than unity (|𝑇 | < 1).
The loop has two inverting gain blocks, each loaded with a “diode connected” MOS device. The
gain block formed by 𝑀3 is loaded by the diode connected MOS 𝑀1 and the gain block formed by
𝑀2 and 𝑅2 is loaded by the diode connected MOS 𝑀4.

Figure 7.46.: Small signal equivalent model for the constant-𝑔𝑚 bias circuit

Example 7 - potential stability issue of the constant-𝑔𝑚 reference

Consider the design of the constant-𝑔𝑚 reference circuit in Figure 7.47:

Assume: 𝐼(𝑀3) = 𝐼(𝑀4) = 𝐼𝑅𝐸𝐹𝑁 = 100𝜇𝐴
𝑉𝑂𝑉 1 = 200𝑚𝑉
𝑚 = 2
For the given circuit:

𝑔𝑚4 = 𝑔𝑚3 = 𝑔𝑚1 = 2 ⋅ 100𝜇𝐴
200𝑚𝑉 = 1𝑚𝑆

Recalling that (assuming square law):
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Figure 7.47.: Constant-𝑔𝑚 reference: design example

𝑉𝑂𝑉 2 = 𝑉𝑂𝑉 1√𝑚

𝐼𝑅𝐸𝐹 =
𝑉𝑂𝑉 1 (1 − 1√𝑚)

𝑅2

for m=2:

𝑉𝑂𝑉 2 = 141𝑚𝑉

𝑅2 = 586Ω

𝑔𝑚2 = 2 ⋅ 100𝜇𝐴
141𝑚𝑉 = 1.41𝑚𝑆

𝑔𝑚2
1 + 𝑔𝑚2𝑅2

= 772𝜇𝑆

The magnitude of the return ratio is less than 1:

|𝑇 | = 𝑖𝑟
𝑖𝑡

= ( 𝑔𝑚2
1 + 𝑔𝑚2𝑅2

) ( 1
𝑔𝑚4

) (��𝑔𝑚3

��𝑔𝑚1
) = 0.772(< 1)

Therefore, the circuit designed is stable, but is possible to have problems. Consider, Figure 7.48,
if the parasitic capacitance 𝐶 shorts 𝑅2, the return ratio becomes larger than 1 and the circuit
becomes unstable.

𝑖𝑟
𝑖𝑡

= ⎛⎜
⎝������*

1
1

1 + 𝑔𝑚2𝑅2
⎞⎟
⎠

(𝑔𝑚2
𝑔𝑚4

) (��𝑔𝑚3

��𝑔𝑚1
) → 1.41
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Figure 7.48.: Constant-𝑔𝑚 reference: possible problem

7.8.2. Closed-loop impedances using return ratio

Feedback can be used to modify the port impedances of a circuit.

Given a feedback circuit with a controlled source of value k (see Figure 7.49), the impedance at
any port, including the input and output ports, can be computed (Gray et al. 2009b) using the
following expression (a.k.a. Blackman’s formula):

𝑍𝑝𝑜𝑟𝑡 = 𝑍𝑝𝑜𝑟𝑡(𝑘 = 0) ⋅ [1 + 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑)
1 + 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) ]

• 𝑍𝑝𝑜𝑟𝑡(𝑘 = 0) is the port impedance with the return ratio’s gain element k set to 0 (either set
𝑔𝑚 = 0 or 𝑎𝑣 = 0)

• 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑) is the return ratio with the port under consideration shorted
• 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) is the return ratio with the port under consideration open

Often, one of the two return ratios in the formula is zero, in these cases feedback increases or
decreases the impedance by a factor (1 + 𝑇 )

In summary, Blackman’s impedance formula:

• it applies to any feedback circuit, regardless of the type of feedback
• it is extremely useful and easy to use
• it is based on return ratio calculations

Example 8 - Input resistance of non-inverting op amp configuration
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7.8. Return Ratio Analysis

Figure 7.49.: Feedback circuit to derive Blackman’s formula with respect to port x

Figure 7.50.: Input resistance of non-inverting op amp circuit
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𝑅𝑖𝑛 = 𝑅𝑖𝑛0 ⋅ [1 + 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑)
1 + 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) ]

• To find 𝑅𝑖𝑛0 set the op amp gain 𝑎𝑣 to zero:

𝑅𝑖𝑛0 = 𝑟𝑖 + 𝑅1||(𝑅2 + 𝑟𝑜||𝑅𝐿) ≈ 𝑟𝑖

• To compute 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑) short the node 𝑣𝑝 to ground and find the return ratio:

Figure 7.51.: T(with input port shorted) for non inverting configuration

𝑇𝑠𝑐 = −𝑣𝑟
𝑣𝑡

|𝑠𝑐 = 𝑎𝑣 ⋅ 𝑅1
𝑟𝑜 + 𝑅𝐿||(𝑅2 + 𝑟𝑖||𝑅1) ≈ 𝑎𝑣 ⋅ 𝑅1

𝑅1 + 𝑅2

• To compute 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) leave the node 𝑣𝑝 floating and find the return ratio:

𝑇𝑜𝑝𝑒𝑛 = −𝑣𝑟
𝑣𝑡

|𝑜𝑝𝑒𝑛 = 0

Feedback increases the input impedance of the circuit significantly.

𝑅𝑖𝑛 ≈ 𝑟𝑖 ⋅
1 + 𝑎𝑣 ⋅ 𝑅1

𝑅1 + 𝑅2
1 + 0 = 𝑟𝑖 ⋅ (1 + 𝑎𝑣 ⋅ 𝑅1

𝑅1 + 𝑅2
)

For 𝑎𝑣 = 106, 𝑅1 = 20𝑘Ω, 𝑅2 = 80𝑘Ω:
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7.8. Return Ratio Analysis

Figure 7.52.: T(with input port open) for non inverting configuration

𝑅𝑖𝑛 ≈ 𝑟𝑖 ⋅ 200000

Example 9 - Output resistance of non-inverting op amp configuration

𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡0 ⋅ [1 + 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑)
1 + 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) ]

• To find 𝑅𝑜𝑢𝑡0 set the op amp gain 𝑎𝑣 to zero:

𝑅𝑜𝑢𝑡0 = 𝑟𝑜||[𝑅2 + 𝑅1||(𝑟𝑖 + 𝑅𝑠)] ≈ 𝑟𝑜

• To compute 𝑇 (𝑝𝑜𝑟𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑) short the node 𝑣𝑜𝑢𝑡 to ground and find the return ratio:

𝑇𝑠𝑐 = −𝑣𝑟
𝑣𝑡

|𝑠𝑐 = 0

• To compute 𝑇 (𝑝𝑜𝑟𝑡𝑜𝑝𝑒𝑛) leave the node 𝑣𝑜𝑢𝑡 floating and find the return ratio:

𝑣𝑛 = 𝑣𝑡
𝑟𝑜 + 𝑅2 + [𝑅1||(𝑟𝑖 + 𝑅𝑠)] ⋅ 𝑅1||(𝑟𝑖 + 𝑅𝑠) ≈ 𝑣𝑡

𝑅2 + 𝑅1
⋅ 𝑅1

𝑣𝑝 = 𝑣𝑛
𝑅𝑠

𝑟𝑖 + 𝑅𝑠
≈ 0
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Figure 7.53.: Output resistance of non-inverting op amp circuit
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7.8. Return Ratio Analysis

Figure 7.54.: T(with output port shorted) for non-inverting configuration

Figure 7.55.: T(with output port open) for non-inverting configuration
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𝑇𝑜𝑝𝑒𝑛 = −𝑣𝑟
𝑣𝑡

|𝑜𝑝𝑒𝑛 = −𝑎𝑣(𝑣𝑝 − 𝑣𝑛)
𝑣𝑡

≈ 𝑎𝑣 ⋅ 𝑅1
𝑅1 + 𝑅2

Feedback decreases the output impedance of the circuit significantly.

𝑅𝑜𝑢𝑡 ≈ 𝑟𝑜 ⋅ 1 + 0
1 + 𝑎𝑣

𝑅1
𝑅1 + 𝑅2

= 𝑟𝑜

1 + 𝑎𝑣
𝑅1

𝑅1 + 𝑅2

For 𝑎𝑣 = 106, 𝑅1 = 20𝑘Ω, 𝑅2 = 80𝑘Ω:

𝑅𝑜𝑢𝑡 ≈ 𝑟𝑜
200000

Example 10 - Output resistance of bootstrapped source follower

Consider the bootstrapped source follower stage of Figure 7.56 and its equivalent small signal circuit
to compute the return ratio with the output port shorted (Figure 7.57) and with the output port
left floating (Figure 7.58)

Figure 7.56.: A bootstrapped source follower stage

The output resistance for 𝑘 = 𝑎𝑣 = 0 is:
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𝑅𝑜𝑢𝑡0 ≡ 𝑅𝑜𝑢𝑡(𝑘 = 0) ≡ 𝑅𝑜𝑢𝑡(𝑎𝑣 = 0) = 1
𝑔𝑚

Figure 7.57.: Finding T(with output port shorted), −𝑣𝑑 = 𝑣𝑜𝑢𝑡 = 0

Output port shorted implies:

𝑇𝑠𝑐 = −𝑣𝑟
𝑣𝑡

|𝑠𝑐 = 0

Output port open means:

𝑔𝑚 ⋅ 𝑣𝑔𝑠 = 0 → 𝑣𝑔𝑠 = 0 → −𝑣𝑑 = 𝑣𝑡 → 𝑣𝑟 = −𝑎𝑣 ⋅ 𝑣𝑡

𝑇𝑜𝑝𝑒𝑛 = −𝑣𝑟
𝑣𝑡

|𝑜𝑝𝑒𝑛 = 𝑎𝑣

Therefore, the closed-loop output resistance is:

𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡0 ⋅ 1 + 𝑇𝑠𝑐
1 + 𝑇𝑜𝑝𝑒𝑛

= 1
𝑔𝑚

⋅ ( 1
1 + 𝑎𝑣

)

Example 11 - Output resistance of super source follower

The super-source follower uses feedback to reduce its output impedance.

The small signal model of the super-source follower is shown in Figure 7.60.

• To find 𝑅𝑜𝑢𝑡0 we must set 𝑣𝑖𝑛 = 0 and 𝑘 = 0. In this circuit we can use, either 𝑔𝑚1 or 𝑔𝑚2 as
k. We will use, 𝑘 = 𝑔𝑚2.
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Figure 7.58.: Finding T(with output port open), 𝑣𝑜𝑢𝑡 = −𝑣𝑑 = −𝑣𝑔𝑠 + 𝑣𝑡

Figure 7.59.: Super-source follower stage
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7.8. Return Ratio Analysis

Figure 7.60.: Small-signal model of the super-source follower

The current in the 𝑔𝑚1 generator flows only in 𝑟𝑜1, so 𝑀1 has no effect on the output resistance
when 𝑔𝑚2 = 0

𝑅𝑜𝑢𝑡0 ≡ 𝑅𝑜𝑢𝑡(𝑔𝑚2 = 0) = 𝑟𝑜2

• The return ratio for 𝑔𝑚2 with the output port shorted is:

𝑇𝑠𝑐 = −𝑖𝑟
𝑖𝑡

|𝑠𝑐 = 0

Figure 7.61.: Return Ratio for 𝑔𝑚2 with the output port shorted

Shorting the output port forces 𝑣𝑜𝑢𝑡 = 0
𝑣𝑜𝑢𝑡 ≡ 𝑣𝑥 ⇔ 𝑣𝑥 = 0
𝑣𝑥 = −𝑣1 ↔ 𝑣1 = 0
𝑔𝑚1 ⋅ 𝑣1 = 0 ⇔ 𝑣𝑦 = 0
𝑣2 = 𝑥𝑥 − 𝑣𝑦 = 0 ⇐ 𝑔𝑚2𝑣2 ≡ 𝑖𝑟 = 0
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• The return ratio for 𝑔𝑚2 with the output port open is:

𝑇𝑜𝑝𝑒𝑛 = −𝑖𝑟
𝑖𝑡

|𝑜𝑝𝑒𝑛 = 𝑔𝑚2𝑟𝑜2 (1 + 𝑔𝑚1𝑟𝑜1)

Figure 7.62.: Return Ratio for 𝑔𝑚2 with the output port open

Opening the output port gives:

𝑣𝑥 = −𝑖𝑡 ⋅ 𝑟𝑜2 ⇔ 𝑖𝑡 = − 𝑣𝑥
𝑟𝑜2

𝑣𝑥 = −𝑣1

𝑣𝑦 − 𝑣𝑥 = −𝑔𝑚1 ⋅ 𝑣1 ⋅ 𝑟𝑜1 ⇔ 𝑣𝑦 = 𝑣𝑥 + 𝑔𝑚1 ⋅ 𝑟𝑜1 ⋅ 𝑣𝑥 ⇔ 𝑣𝑦 = 𝑣𝑥 (1 + 𝑔𝑚1𝑟𝑜1)
𝑣2 = 𝑣𝑦

𝑖𝑟 ≡ 𝑔𝑚2𝑣2 = 𝑔𝑚2 (1 + 𝑔𝑚1 ⋅ 𝑟𝑜1) ⋅ 𝑣𝑥

𝑇𝑜𝑝𝑒𝑛 = −𝑖𝑟
𝑖𝑡

= 𝑔𝑚2𝑟𝑜2 (1 + 𝑔𝑚1𝑟𝑜1)

• The closed-loop output resistance is:

𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡0 ⋅ 1 + 𝑇𝑠𝑐
1 + 𝑇𝑜𝑝𝑒𝑛

= 𝑟𝑜2
1 + 𝑔𝑚2𝑟𝑜2 (1 + 𝑔𝑚1𝑟𝑜1)

Assuming 𝑔𝑚𝑟𝑜 ≫ 1

𝑅𝑜𝑢𝑡 ≈ 1
𝑔𝑚1𝑔𝑚2𝑟𝑜1

Example 12 - Input and output resistance of shunt-shunt stage (TIA)

Closed-loop input resistance

𝑅𝑖𝑛(𝑔𝑚 = 0) = 𝑅𝐹 + 𝑟𝑜

𝑇 (𝑖𝑛𝑝𝑢𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑) = 0
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7.8. Return Ratio Analysis

Figure 7.63.: Shunt-shunt stage (Transimpedance Amplifier)

Figure 7.64.: Small signal model of the shunt-shunt stage
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7. Introduction to Feedback

Figure 7.65.: Small signal model to find the return ratio for 𝑔𝑚

𝑇 (𝑖𝑛𝑝𝑢𝑡𝑜𝑝𝑒𝑛) = 𝑔𝑚𝑟𝑜

Therefore, the closed-loop input resistance is:

𝑅𝑖𝑛 = (𝑅𝐹 + 𝑟𝑜) ⋅ 1
1 + 𝑔𝑚𝑟𝑜

≈ 1
𝑔𝑚

(1 + 𝑅𝐹
𝑟𝑜

)

Closed-loop output resistance

𝑅𝑜𝑢𝑡(𝑔𝑚 = 0) = 𝑟𝑜

𝑇 (𝑖𝑛𝑝𝑢𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑑) = 0

𝑇 (𝑖𝑛𝑝𝑢𝑡𝑜𝑝𝑒𝑛) = 𝑔𝑚𝑟𝑜

Therefore, the closed-loop output resistance is:

𝑅𝑜𝑢𝑡 = 𝑟𝑜 ⋅ 1
1 + 𝑔𝑚𝑟𝑜

≈ 1
𝑔𝑚

Example 13 - Output resistance of active cascode

The “active cascode” circuit is also referred as “regulated cascode” or “gain-boosting” technique.

• To find 𝑅𝑜𝑢𝑡0 we set 𝑣𝑖𝑛 = 0 and 𝑘 = 𝑎𝑣 = 0

With 𝑎𝑣 = 0 the gate of 𝑀2 gets grounded:

𝑅𝑜𝑢𝑡0 ≡ 𝑅𝑜𝑢𝑡(𝑎𝑣 = 0) = 𝑟𝑜1 + 𝑟𝑜2 (1 + 𝑔′
𝑚2) ≈ 𝑟𝑜1 ⋅ 𝑟𝑜2 ⋅ 𝑔′

𝑚2
𝑤𝑖𝑡ℎ𝑔′

𝑚2 = 𝑔𝑚2 + 𝑔𝑚2𝑏

• To find the return ratio for 𝑎𝑣 with the output port open, we set 𝑣𝑖𝑛 = 0 and leave the output
node floating
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Figure 7.66.: Active cascode gain stage

247



7. Introduction to Feedback

Figure 7.67.: Return ratio for 𝑎𝑣 with the output port open
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The current of the 𝑔𝑚-generators (𝑔𝑚2𝑣𝑔𝑠2 and 𝑔𝑚𝑏2𝑣𝑏𝑠2) flows only in 𝑟𝑜1, changing the drain
voltage of 𝑀2, but keeping the source voltage of 𝑀2 to 𝑣𝑥 = 0 ⇒ 𝑣𝑑 = −𝑣𝑥 = 0. Therefore,
𝑣𝑟 = 𝑎𝑣 ⋅ 𝑣𝑑 = 0

𝑇𝑜𝑝𝑒𝑛 = −𝑣𝑟
𝑣𝑡

|𝑜𝑝𝑒𝑛 = 0

• To find the return ratio for 𝑎𝑣 with the output port shorted, we set 𝑣𝑖𝑛 = 0 and ground the
output node (the output node is the drain of 𝑀2)

Figure 7.68.: Return ratio for 𝑎𝑣 with the output port shorted

With 𝑀2 drain to ground (CD), 𝑣𝑥 = −𝑣𝑑 is the output of a CD with 𝑣𝑡 as input.

𝑣𝑡 = 𝑣𝑔𝑠2 − 𝑣𝑑

Neglecting the 𝑟𝑜 terms w.r.t. the 1/𝑔𝑚𝑏2 term:

−𝑣𝑑 ≈ 𝑔𝑚2𝑣𝑔𝑠2
𝑔𝑚𝑏2

⇒ 𝑣𝑡 ≈ 𝑣𝑔𝑠2 (1 + 𝑔𝑚2
𝑔𝑚𝑏2

) ⇒ −𝑣𝑑
𝑣𝑡

≈ 𝑔𝑚2
𝑔𝑚2 + 𝑔𝑚𝑏2

≈ 1

so the return ratio is:
𝑇𝑠𝑐 = −𝑣𝑟

𝑣𝑡
|𝑠𝑐 ≈ 𝑎𝑣 ⋅ 𝑔𝑚2

𝑔𝑚2 + 𝑔𝑚𝑏2
≈ 𝑎𝑣

• The closed-loop output resistance is:
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𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡0 ⋅ 1 + 𝑇𝑠𝑐
1 + 𝑇𝑜𝑝𝑒𝑛

≈ 𝑟𝑜1 ⋅ 𝑟𝑜2 ⋅ 𝑔′
𝑚2 ⋅ 𝑎𝑣

Example 14 - Using Blackman’s formula for ZVTC calculations

Figure 7.69.: ZVTC calculations

Using first principles (KVL and KCL) we can derive that:

𝜏𝐶𝑔𝑠 = 𝐶𝑔𝑠 ⋅ 𝑅𝑖 + 𝑅𝐺
1 + 𝑔𝑚𝑅𝑖

Figure 7.70.: Small signal model for ZVTC calculations, assuming 𝑟𝑜 can be ignored

Let’s look at the problem, using return ratio.

The port (gate-source) impedance with the return ratio’s gain element 𝑔𝑚 set to 0 is:

𝑅𝑔𝑠(𝑔𝑚 = 0) = 𝑅𝑖 + 𝑅𝐺

The return ratio for the gain element 𝑔𝑚 with port under consideration shorted is:

𝑇𝑠𝑐 = −𝑖𝑟
𝑖𝑡

|𝑠𝑐 = 0

Shorting the port forces 𝑣𝑔𝑠 = 0 so it “kills” the 𝑔𝑚 generator.
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The return ratio for the gain element 𝑔𝑚 with port under consideration open is:

𝑇𝑜𝑝𝑒𝑛 = −𝑖𝑟
𝑖𝑡

|𝑜𝑝𝑒𝑛 = 𝑔𝑚 ⋅ 𝑅𝑖

Figure 7.71.: return ratio with port G-S open

𝑣𝑠 = 𝑖𝑡 ⋅ 𝑅𝑖

𝑣𝑔 = 0 ⇒ 𝑣𝑔𝑠 = −𝑖𝑡 ⋅ 𝑅𝑖

𝑖𝑟 = 𝑔𝑚𝑣𝑔𝑠 = −𝑔𝑚𝑅𝑖𝑖𝑡

The closed-loop port impedance between G and S is:

𝑅𝑔𝑠 = 𝑅𝑔𝑠(𝑔𝑚 = 0) ⋅ 1 + 𝑇𝑠𝑐
1 + 𝑇𝑜𝑝𝑒𝑛

= 𝑅𝑖 + 𝑅𝐺
1 + 𝑔𝑚𝑅𝑖

Example 15 - Voltage gain and output resistance of common source with degeneration
using return ratio

voltage gain (assuming 𝑟𝑜 negligible)

𝐴𝑣 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝐴∞ ⋅ 𝑇
1 + 𝑇 + 𝑑

1 + 𝑇

𝐴∞ is the gain of the circuit when the gain element k of the controlled source tends to ∞ (note
that if 𝑘 = 𝑔𝑚 = ∞, for the current of the dependent source to be finite, it must be 𝑣𝑔𝑠 = 0).
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Figure 7.72.: Common source with degeneration

𝐴∞ = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

|𝑔𝑚→∞ = −𝑅𝐷
𝑅𝑆

𝑑 is the gain of the circuit when the gain element k of the controlled source equals 0.

𝑑 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

|𝑔𝑚=0 = 0

𝑇 is the return ratio of the dependent source.

To compute the return ratio instead of separating the dependent source from the rest of the circuit
and replacing it with an independent source of the same kind as always done so far, we will follow
an equivalent procedure consisting of adding an independent source 𝑠𝑥. In practice, this procedure
is usually more easily performed, because it does not require tearing the original circuit apart. See
(Middlebrook 2006) and (Hajimiri 2023).

The introduction of 𝑠𝑥 is completely equivalent to using an independent source 𝑠𝑡 in place of the
separated dependent source and monitoring the signal 𝑠𝑟 that returns to the separated dependent
source.

𝑠𝑡 = 𝑠𝑥 + 𝑠𝑟

𝑣𝑔𝑠 = −𝑖𝑡𝑅𝑆

𝑖𝑟 = 𝑔𝑚𝑣𝑔𝑠 = −𝑔𝑚𝑅𝑆𝑖𝑡

𝑇 = −𝑖𝑟
𝑖𝑡

= 𝑔𝑚𝑅𝑆

Therefore, as expected:
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Figure 7.73.: Small signal model to find the return ratio of 𝑔𝑚
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𝐴𝑣 = 𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

= 𝐴∞ ⋅ 𝑇
1 + 𝑇 + 𝑑

1 + 𝑇 = −𝑔𝑚𝑅𝐷
1 + 𝑔𝑚𝑅𝑆

Output resistance

To find the output resistance we use Blackman’s formula.

Figure 7.74.: Small signal model to find the output resistance

The output resistance with 𝑔𝑚 = 0 is:

𝑅𝑜𝑢𝑡(𝑔𝑚 = 0) = 𝑅𝑆 = 𝑟𝑜

With the output port open:

𝑣𝑔𝑠 = −𝑖𝑡𝑅𝑆 = 0 ⇒ 𝑖𝑟 = 𝑔𝑚𝑣𝑔𝑠 = 0
So, the return ratio with the output port open is:

𝑇𝑜𝑝𝑒𝑛 = −𝑖𝑟
𝑖𝑡

|𝑜𝑝𝑒𝑛 = 0

With the output port shorted:

𝑣𝑔𝑠 = −(𝑅𝑆||𝑟𝑜) ⋅ 𝑖𝑡 ⇒ 𝑖𝑟 = 𝑔𝑚𝑣𝑔𝑠 = −𝑔𝑚 ⋅ (𝑅𝑆||𝑟𝑜) ⋅ 𝑖𝑡

So, the return ratio with the output port shorted is:

𝑇𝑠𝑐 = −𝑖𝑟
𝑖𝑡

|𝑠𝑐 = 𝑔𝑚(𝑅𝑆||𝑟𝑜)
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Figure 7.75.: return ratio with output port open
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Figure 7.76.: return ratio with output port shorted
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And the output resistance is:

𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡(𝑔𝑚 = 0) ⋅ 1 + 𝑇𝑠𝑐
1 + 𝑇𝑜𝑝𝑒𝑛

= (𝑅𝑆 + 𝑟𝑜) (1 + 𝑔𝑚
𝑅𝑆𝑟𝑜

𝑅𝑆 + 𝑟𝑜
) =

= 𝑅𝑆 + 𝑟𝑜(1 + 𝑔𝑚𝑅𝑆)

7.8.3. Summary - Return Ratio Analysis

• Return-ratio analysis is an alternative approach to two-port feedback analysis.
• Provided the return ratio T is computed for a dependnt source that breaks the feedback loop

globally, the return ratio is a measure of loop gain. In general, the return ratio of a controlled
source is a measure of how much of the signal generated by that controlled source is returned
due to feedback, it is not necessarily the loop gain (Hurst 1992).

• For negative feedback circuits T > 0
• In an ideal feedback system 𝑇 → ∞ and the closed loop gain is 𝐴∞
• Blackman’s formula gives the closed-loop impedance in terms of two return ratios. The

formula is the same for any type of feedback circuit, and it applies to any port (not only the
input and output ports)

• Return ratio analysis is often simpler than two-port analayis
• Return ratio analysis uses equations that are independent of the type of feedback.
• Two-port analysis uses four-feedback configurations (series-series, series-shunt, shunt-series,

and shunt-shunt), therefore, the type of feedback must be correctly identified before starting
the analysis

• In practice, all physical networks are multiloop feedback structures. Unwanted local return
loops exists around individual transistor through the parasitic capacitances (Tian et al. 2001)
(Behmanesh and Andreani 2023). Dealing with multiple feedback mechanisms makes identify-
ing an appropriate controlled source to use for the return ratio analysis more difficult. When
dealing with multiloop feedback structures, the controlled source used to compute the return
ratio, must be one that breaks the loop globally (Hurst and Lewis 1995).

• One aspect that is often cause of confusion, about return-ratio analysis and two-port analysisis
is that the loop gain L computed through two-port analysis and the loop gain T computed
using the return ratio, can be different. This is because they are intrinsically two different
measures of transmission, however both methods lead to correct closed-loop expressions and
both can be used to check stability (Chiu 2012).
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